Landscape Partnership Resources Library
An Early Energy Crisis and Its Consequences
In the 16th century Britain ran out o f wood and resorted to coal. The adoption ofthe new fuel set in motion a chain ofevents that culminated some two centuries later in the Industrial Revolution
Fear of failure in conservation: The problem and potential solutions to aid conservation of extremely small populations
The potential for extirpation of extremely small populations (ESPs) is high due to their vulnerability to demographic and environmental stochasticity and negative impacts of human activity. We argue that conservation actions that could aid ESPs are sometimes delayed because of a fear of failure. In human psychology, the fear of failure is composed of several distinct cognitive elements, including ‘‘uncertainty about the future’’ and ‘‘upsetting important others.’’ Uncertainty about the future is often driven by information obstacles in conservation: information is either not easily shared among practitioners or information is lacking. Whereas, fear of upsetting important others can be due to apprehension about angering constituents, peers, funders, and other stakeholders. We present several ways to address these fears in hopes of improving the conservation process. We describe methods for increased information sharing and improved decision-making in the face of uncertainty, and recommend a shift in focus to cooperative actions and improving methods for evaluating success. Our hope is that by tackling stumbling blocks due to the apprehension of failure, conservation and management organizations can take steps to move from fear to action.
Reconciling nature conservation and traditional farming practices: a spatially explicit framework to assess the extent of High Nature Value farmlands in the European countryside
Over past centuries, European landscapes have been shaped by human management. Traditional, low intensity agricultural practices, adapted to local climatic, geographic, and environmental conditions, led to a rich, diverse cultural and natural heritage, reflected in a wide range of rural landscapes, most of which were preserved until the advent of industrialized agriculture (Bignal & McCracken 2000; Paracchini et al. 2010; Oppermann et al. 2012). Agricultural landscapes currently account for half of Europe’s territory (Overmars et al. 2013), with ca. 50% of all species relying on agricultural habitats at least to some extent (Kristensen 2003; Moreira et al. 2005; Halada et al. 2011). Due to their acknowledged role in the maintenance of high levels of biodiversity, low-intensity farming systems have been highlighted as critical to nature conservation and protection of the rural environment (Beaufoy et al. 1994; Paracchini et al. 2010; Halada et al.2011; Egan & Mortensen 2012).
Invited Review: Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities
By altering fluxes of heat, momentum, and moisture exchanges between the land surface and atmosphere, forestry and other land-use activities affect climate. Although long recognized scientifically as being important, these so-called biogeophysical forcings are rarely included in climate policies for forestry and other land management projects due to the many challenges associated with their quantification. Here, we review the scientific literature in the fields of atmospheric science and terrestrial ecology in light of three main objectives: (i) to elucidate the challenges associated with quantifying biogeophysical climate forcings connected to land use and land management, with a focus on the forestry sector; (ii) to identify and describe scientific approaches and/or metrics facilitating the quantification and interpretation of direct biogeophysical climate forcings; and (iii) to identify and recommend research priorities that can help overcome the challenges of their attribution to specific land-use activities, bridging the knowledge gap between the climate modeling, forest ecology, and resource management communities. We find that ignoring surface biogeophysics may mislead climate mitigation policies, yet existing metrics are unlikely to be sufficient. Successful metrics ought to (i) include both radiative and nonradiative climate forcings; (ii) reconcile disparities between biogeophysical and biogeochemical forcings, and (iii) acknowledge trade-offs between global and local climate benefits. We call for more coordinated research among terrestrial ecologists, resource managers, and coupled climate modelers to harmonize datasets, refine analytical techniques, and corroborate and validate metrics that are more amenable to analyses at the scale of an individual site or region.
A long-term perspective on a modern drought in the American Southeast
The depth of the 2006–9 drought in the humid, southeastern US left several metropolitan areas with only a 60–120 day water supply. To put the region’s recent drought variability in a long-term perspective, a dense and diverse tree-ring network—including the first records throughout the Apalachicola–Chattahoochee–Flint river basin—is used to reconstruct drought from 1665 to 2010 CE. The network accounts for up to 58.1% of the annual variance in warm-season drought during the 20th century and captures wet eras during the middle to late 20th century. The reconstruction shows that the recent droughts are not unprecedented over the last 346 years. Indeed, droughts of extended duration occurred more frequently between 1696 and 1820. Our results indicate that the era in which local and state water supply decisions were developed and the period of instrumental data upon which it is based are amongst the wettest since at least 1665. Given continued growth and subsequent industrial, agricultural and metropolitan demand throughout the southeast, insights from paleohydroclimate records suggest that the threat of water-related conflict in the region has potential to grow more intense in the decades to come.
Scenarios of future land use change around United States’ protected areas
Land use change around protected areas can diminish their conservation value, making it important to predict future land use changes nearby. Our goal was to evaluate future land use changes around protected areas of different types in the United States under different socioeconomic scenarios. We analyzed econometric-based projections of future land use change to capture changes around 1260 protected areas, including National Forests, Parks, Refuges, and Wilderness Areas, from 2001 to 2051, under different land use policies and crop prices. Our results showed that urban expansion around protected areas will continue to be a major threat, and expand by 67% under business-as-usual conditions. Concomitantly, a substantial number of protected areas will lose natural vegetation in their surroundings. National land-use policies or changes in crop prices are not likely to affect the overall pattern of land use, but can have effects in certain regions. Discouraging urbanization through zoning, for example, can reduce future urban pressures around National Forests and Refuges in the East, while the implementation of an afforestation policy can increase the amount of natural vegetation around some Refuges throughout the U.S. On the other hand, increases in crop prices can increase crop/pasture cover around some protected areas, and limit the potential recovery of natural vegetation. Overall, our results highlight that future land-use change around protected areas is likely to be substantial but variable among regions and protected area types. Safeguarding the conservation value of protected areas may require serious consideration of threats and opportunities arising from future land use.
Scaling up from gardens: biodiversity conservation in urban environments
As urbanisation increases globally and the natural environment becomes increasingly fragmented, the importance of urban green spaces for biodiversity conservation grows. In many countries, private gardens area major component of urban green space and can provideconsiderable biodiversity benefits. Gardens and adjacent habitats form interconnected networks and a landscape ecology framework is necessary to understand the relationship between the spatial configuration of garden patches and their constituent biodiversity. A scale-dependent tension is apparent in garden management, whereby the individual garden is much smaller than the unit of management needed to retain viable populations. To overcome this, here we suggest mechanisms for encouraging ‘wildlife-friendly’ management of collections of gardens across scales from the neighbourhood to the city.