Landscape Partnership Resources Library
Public land, timber harvests, and climate mitigation: Quantifying carbon sequestration potential on U.S. public timberlands
Scientists and policy makers have long recognized the role that forests can play in countering the atmospheric buildup of carbon dioxide (CO2), a greenhouse gas (GHG). In the United States, terrestrial carbon sequestration in private and public forests offsets approximately 11% of all GHG emissions from all sectors of the economy on an annual basis. Although much of the attention on forest carbon sequestration strategy in the United States has been on the role of private lands, public forests in the United States represent approximately 20% of the U.S. timberland area and also hold a significantly large share (30%) of the U.S. timber volume. With such a large standing timber inventory, these forested lands have considerable impact on the U.S. forest carbon balance. To help decision makers understand the carbon implications of potential changes in public timberland management, we compared a baseline timber harvest scenario with two alternative harvest scenarios and estimated annual carbon stock changes associated with each. Our analysis found that a ‘‘no timber harvest’’ scenario eliminating harvests on public lands would result in an annual increase of 17–29 million metric tonnes of carbon (MMTC) per year between 2010 and 2050—as much as a 43% increase over current sequestration levels on public timberlands and would offset up to 1.5% of total U.S. GHG emissions. In contrast, moving to a more intense harvesting policy similar to that which prevailed in the 1980s may result in annual carbon losses of 27–35 MMTC per year between 2010 and 2050. These losses would represent a significant decline (50–80%) in anticipated carbon sequestration associated with the existing timber harvest policies. If carbon sequestration were valued in the marketplace as part of a GHG offset program, the economic value of sequestered carbon on public lands could be substantial relative to timber harvest revenues. Public timberland; Forestry; Climate change; Carbon sequestration
WHY FORESTS ARE PIVOTAL IN PLANNING FOR CLIMATE CHANGE
17 slides show carbon-forest relationships including logging and carbon in US forests
Spatial relationship between climatologies and changes in global vegetation activity
Vegetation forms a main component of the terrestrial biosphere and plays a crucial role in land-cover and climate- related studies. Activity of vegetation systems is commonly quantified using remotely sensed vegetation indices (VI). Extensive reports on temporal trends over the past decades in time series of such indices can be found in literature. However, little remains known about the processes underlying these changes at large spatial scales. In this study, we aimed at quantifying the spatial relationship between changes in potential climatic growth constraints (i.e. temperature, precipitation and incident solar radiation) and changes in vegetation activity (1982–2008). We demonstrate an additive spatial model with 0.5° resolution, consisting of a regression component representing climate-associated effects and a spatially correlated field representing the combined influence of other factors, including land-use change. Little over 50% of the spatial variance could be attributed to changes in climatologies; conspicuously, many greening trends and browning hotspots in Argentina and Australia. The nonassociated model component may contain large- scale human interventions, feedback mechanisms or natural effects, which were not captured by the climatologies. Browning hotspots in this component were especially found in subequatorial Africa. On the scale of land-cover types, strongest relationships between climatologies and vegetation activity were found in forests, including indications for browning under warming conditions (analogous to the divergence issue discussed in dendroclimatology). Keywords: climate- and human-induced change, climatologies, Gaussian random field, growth constraints, regression, spatial additive model, vegetation-activity trends
Phylogenetic trees and the future of mammalian biodiversity
Phylogenies describe the origins and history of species. However, they can also help to predict species’ fates and so can be useful tools for managing the future of biodiversity. This article starts by sketching how phylogenetic, geographic, and trait information can be combined to elucidate present mammalian diversity patterns and how they arose. Recent diversification rates and standing diversity show different geographic patterns, indicating that cra- dles of diversity have moved over time. Patterns in extinction risk reflect both biological differences among mammalian lineages and differences in threat intensity among regions. Phylogenetic com- parative analyses indicate that for small-bodied mammals, extinc- tion risk is governed mostly by where the species live and the intensity of the threats, whereas for large-bodied mammals, eco- logical differences also play an important role. This modeling approach identifies species whose intrinsic biology renders them particularly vulnerable to increased human pressure. We outline how the approach might be extended to consider future trends in anthropogenic drivers, to identify likely future battlegrounds of mammalian conservation, and the likely casualties. This framework could help to highlight consequences of choosing among different future climatic and socioeconomic scenarios. We end by discussing priority-setting, showing how alternative currencies for diversity can suggest very different priorities. We argue that aiming to maximize long-term evolutionary responses is inappropriate, that conservation planning needs to consider costs as well as benefits, and that proactive conservation of largely intact systems should be part of a balanced strategy. extinction risk latent risk mammals
Variability, contingency and rapid change in recent subarctic alpine tree line dynamics
Summary 1 Boundaries between forest and tundra ecosystems, tree lines, are expected to advance in altitude and latitude in response to climate warming. However, varied responses to 20th century warming suggest that in addition to temperature, tree line dynamics are mediated by species-specific traits and environmental conditions at landscape and local scales. 2 We examined recent tree line dynamics at six topographically different, but climatic- ally similar, sites in south-west Yukon, Canada. Dendroecological techniques were used to reconstruct changes in density of the dominant tree species, white spruce (Picea glauca), and to construct static age distributions of willow (Salix spp.), one of two dominant shrub genera. Data were analysed to identify periods and rates of establish- ment and mortality and to relate these to past climate. 3 Tree line elevation and stand density increased significantly during the early to mid 20th century. However, this change was not uniform across sites. Spruce advanced rapidly on south-facing slopes and tree line rose 65 – 85 m in elevation. Tree line did not advance on north-facing slopes, but stand density increased 40–65%. Differences observed between aspects were due primarily to the differential presence of permafrost. Additional variability among sites was related to slope and vegetation type. Results were less conclusive for willow, but evidence for an advance was found at two sites. 4 Increases in stand density were strongly correlated with summer temperatures. The period of rapid change coincided with a 30-year period of above average temperatures, beginning in 1920. The highest correlations were obtained using a forward average of 30 – 50 years, supporting the hypothesis that tree line dynamics are controlled more by conditions influencing recruitment than by establishment alone. 5 The changes observed at several sites are suggestive of a threshold response and challenge the notion that tree lines respond gradually to climate warming. Overall, the results provide further evidence to support the idea that the pattern and timing of change is contingent on local, landscape, and regional-scale factors, as well as species’ biology. Key-words: climate change, dendroecology, ecotones, forest-tundra, non-linearity, Picea glauca, Salix glauca, stand dynamics, timberline, Yukon
Renewable Energy and Energy Efficiency Incentives: A Summary of Federal Programs
Summary Energy is crucial to the operation of a modern industrial and services economy. Recently, there have been growing concerns about the availability and cost of energy and about environmental impacts of fossil energy use. Those concerns have rekindled interest in energy efficiency, energy conservation, and the development and commercialization of renewable energy technologies. Many of the existing energy efficiency and renewable energy programs have authorizations tracing back to the 1970s. Many of the programs have been reauthorized and redesigned repeatedly to meet changing economic factors. The programs apply broadly to sectors ranging from industry to academia, and from state and local governments to rural communities. Since 2005, Congress has enacted several major energy laws: the Energy Policy Act of 2005 (EPACT 2005; P.L. 109-58); the Energy Independence and Security Act of 2007 (EISA; P.L. 110- 140); the Energy Improvement and Extension Act (EIEA), enacted as Division B of the Emergency Economic Stabilization Act (EESA; P.L. 110-343); and the American Reinvestment and Recovery Act (ARRA; P.L. 111-5). Each of those laws established, expanded, or modified energy efficiency and renewable energy research, development, demonstration, and deployment (RDD&D) programs. The Department of Energy (DOE) operates the greatest number of efficiency and renewable energy incentive programs. The Department of the Treasury and the Department of Agriculture (USDA) operate several programs. A few programs can also be found among the Departments of Interior (DOI), Labor (DOL), Housing and Urban Development (HUD), Veterans Affairs (VA), and the Small Business Administration (SBA). This report describes federal programs that provide grants, loans, loan guarantees, and other direct or indirect incentives for energy efficiency, energy conservation, and renewable energy. For each program, the report provides the administering agency, authorizing statute(s), annual funding, and the program expiration date. The appendixes provide summary information in a tabular format and also list recently expired programs.
Massive Forest Dieback SW US
Summary: • Tree death is an important ecological process, but we don’t know very much about it. • MFD (Massive Forest Dieback) is often driven by stress from extreme climate events, rather than equilibrial mean climate conditions. • MFD occurs naturally in many forest types. However, there are indications that emerging patterns of dieback in some montane areas are being amplified by global climate change, and predictions of more extreme climate events suggest risk of increases in associated forest dieback episodes. • We cannot accurately predict the effects of climate change on montane forest ecosystems without better field data and model incorporation of species-specific thresholds of stress-induced tree mortality, and the dynamics of amplifying disturbances like insect outbreaks and fire. • CIRMOUNT could help address these knowledge gaps by fostering regional networks for long-term monitoring and research on: 1) plot-based demographies of multiple tree species across landscape and regional gradients to get data on pulses of mortality and natality; 2) tree growth using straightforward dendrometer band methods; 3) feedbacks between forest dieback, other disturbances, and overall ecosystem patterns and processes; and 4) effectiveness of mitigation strategies (e.g., thinning, prescribed burning).
THE COST OF LEAFING
Understanding the trade-offs involved for plants making leaves promises fresh insights on every scale from the plant to the planet, finds John Whitfield. Excerpt: One definition of economics is the study choice under the constraint of scarcity, and the narrowrangeofchoicesintheleafeconomics spectrum provides a vivid illus- tration of the various scarcities that dominate plants’ lives. The fact that all leaves lie fairly close to the axis of the spectrum shows that, despite the vast diversity of foliage produced over hundreds of millions of years of evolution, plants have little room for manoeuvre in how they build their leaves. “Most textbooks of ecology project the idea that there’s an almost infinite diversity of organisms,” says plant ecologist Philip Grime of the University of Sheffield, UK. “But if you look at the core biology of what organisms do with resources, you find severe constraints and trade-offs.”
The payoff of conservation investments in tropical countryside
The future of biodiversity and ecosystem services hinges on har- monizing agricultural production and conservation, yet there is no planning algorithm for predicting the efficacy of conservation investments in farmland. We present a conservation planning framework for countryside (working agricultural landscapes) that calculates the production and conservation benefits to the current baseline of incremental investments. Our framework is analogous to the use of reserve design algorithms. Unlike much countryside modeling, our framework is designed for application in data- limited contexts, which are prevalent. We apply our framework to quantify the payoff for Costa Rican birds of changing farm plot and border vegetation. We show that installing windbreaks of native vegetation enhances both bird diversity and farm income, espe- cially when complementing certain crop types. We make predic- tions that differ from those of approaches currently applied to agri-environment planning,: e.g., although habitat with trees has lower local species richness than farm plot habitats (1– 44% lower), replacing any plot habitat with trees should boost regional rich- ness considerably. Our planning framework reveals the small, targeted changes on farms that can make big differences for biodiversity. biodiversity conservation planning countryside biogeography ecological-economic models matrix
Reliability of Indicators of Decline in Abundance
Although there are many indicators of endangerment (i.e., whether populations or species meet criteria that justify conservation action), their reliability has rarely been tested. Such indicators may fail to identify that a population or species meets criteria for conservation action (false negative) or may incorrectly show that such criteria have been met (false positive). To quantify the rate of both types of error for 20 com- monly used indicators of declining abundance (threat indicators), we used receiver operating characteristic curves derived from historical (1938–2007) data for 18 sockeye salmon (Oncorhynchus nerka) populations in the Fraser River, British Columbia, Canada. We retrospectively determined each population’s yearly status (reflected by change in abundance over time) on the basis of each indicator. We then compared that popu- lation’s status in a given year with the status in subsequent years (determined by the magnitude of decline in abundance across those years). For each sockeye population, we calculated how often each indicator of past status matched subsequent status. No single threat indicator provided error-free estimates of status, but indicators that reflected the extent (i.e., magnitude) of past decline in abundance (through comparison of current abundance with some historical baseline abundance) tended to better reflect status in subsequent years than the rate of decline over the previous 3 generations (a widely used indicator). We recommend that when possible, the reliability of various threat indicators be evaluated with empirical analyses before such indicators are used to determine the need for conservation action. These indicators should include estimates from the entire data set to take into account a historical baseline.
Forest commons and local enforcement
This article examines the relationship between local enforcement and forests used as commons. It uses a unique multicountry dataset, created over the past 15 years by the International Forestry Resources and Institutions Research Program. Drawing on original enforcement and forest commons data from 9 countries, we find that higher levels of local enforcement have a strong and positive but complex relationship to the probability of forest regeneration. This relationship holds even when the influence of a number of other factors such as user group size, subsistence, and commercial importance of forests, size of forest, and collective action for forest improvement activities is taken into account. Although several of the above factors have a statistically signifi- cant relationship to changes in the condition of forest commons, differences in levels of local enforcement strongly moderate their link with forest commons outcomes. The research, using data from diverse political, social, and ecological contexts, shows both the importance of enforcement to forest commons and some of the limits of forest governance through commons arrangements. governance sustainability collective action local institutions forest regeneration
Highly episodic fire and erosion regime over the past 2,000 y in the Siskiyou Mountains, Oregon
Fire is a primary mode of natural disturbance in the forests of the Pacific Northwest. Increased fuel loads following fire suppression and the occurrence of several large and severe fires have led to the perception that in many areas there is a greatly increased risk of high-severity fire compared with presettlement forests. To recon- struct the variability of the fire regime in the Siskiyou Mountains, Oregon, we analyzed a 10-m, 2,000-y sediment core for charcoal, pollen, and sedimentological data. The record reveals a highly episodic pattern of fire in which 77% of the 68 charcoal peaks before Euro-American settlement cluster within nine distinct peri- ods marked by a 15-y mean interval. The 11 largest charcoal peaks are significantly related to decadal-scale drought periods and are followed by pulses of minerogenic sediment suggestive of rapid sediment delivery. After logging in the 1950s, sediment load was increased fourfold compared with that from the most severe presettlement fire. Less severe fires, marked by smaller charcoal peaks and no sediment pulses, are not correlated significantly with drought periods. Pollen indicators of closed forests are consistent with fire-free periods of sufficient length to maintain dense forest and indicate a fire-triggered switch to more open conditions during the Medieval Climatic Anomaly. Our results indicate that over millennia fire was more episodic than revealed by nearby shorter tree-ring records and that recent severe fires have precedents during earlier drought episodes but also that sediment loads resulting from logging and road building have no precedent in earlier fire events. historical fire | climate variability | ecological resilience | logging | sediment charcoal
The floodplain large-wood cycle hypothesis: A mechanism for the physical and biotic structuring of temperate forested alluvial valleys in the North Pacific coastal ecoregion
A ‘floodplain large-wood cycle’ is hypothesized as a mechanism for generating landforms and influencing river dynamics in ways that structure and maintain riparian and aquatic ecosystems of forested alluvial river valleys of the Pacific coastal temperate rainforest of North America. In the cycle, pieces of wood large enough to resist fluvial transport and remain in river channels initiate and stabilize wood jams, which in turn create alluvial patches and protect them from erosion. These stable patches provide sites for trees to ma- ture over hundreds of years in river valleys where the average cycle of floodplain turnover is much briefer, thus providing a future source of large wood and reinforcing the cycle. Different tree species can function in the floodplain large-wood cycle in different ecological regions, in different river valleys within regions, and within individual river valleys in which forest composition changes through time. The cycle promotes a physically complex, biodiverse, and self-reinforcing state. Conversely, loss of large trees from the system drives landforms and ecosystems toward an alternate stable state of diminished biogeomorphic complexity. Reestablishing large trees is thus necessary to restore such rivers. Although interactions and mechanisms may differ between biomes and in larger or smaller rivers, available evidence suggests that large riparian trees may have similarly fundamental roles in the physical and biotic structuring of river valleys elsewhere in the temperate zone. Wood debris Riparian forest Fluvial geomorphology Foundation species Biogeomorphology River restoration
What Every Conservation Biologist Should Know about Human Population
EDITORIAL:CONCLUDING PARAGRAPH: As with population issues, conservation biologists should ensure that we, as individuals and a professional society, understand the current state of knowledge about consumption and encourage constructive dialogues on consumption and its effects on biodiversity. We are not the first to highlight the issue of consumption (Baltz 1999) in this journal. Although conservation biologists may debate whether U.S. consumption is excessive (Ehrlich & Goulder 2007), the answer is more clear to some. Two months after the 2011 Society for Conservation Biology meeting mentioned above, the first author was in India attending a presentation by Elinor Os- trom (2012), who won the Nobel Prize for her work on management of the commons. At the end of the presentation, a participant asked Dr. Ostrom how we can get the world to talk about consumption as the root cause of the world’s environmental problems. This is the question conservation biologists should ask more often.
Roles and Effects of Environmental Carbon Dioxide in Insect Life
Carbon dioxide (CO2) is a ubiquitous sensory cue that plays mul- tiple roles in insect behavior. In recent years understanding of the well-known role of CO2 in foraging by hematophagous insects (e.g., mosquitoes) has grown, and research on the roles of CO2 cues in the foraging and oviposition behavior of phytophagous insects and in behavior of social insects has stimulated interest in this area of insect sensory biology. This review considers those advances, as well as some of the mechanistic bases of the modulation of behavior by CO2 and important progress in our understanding of the detection and CNS processing of CO2 information in insects. Finally, this review briefly addresses how the ongoing increase in atmospheric CO2 levels may affect insect life.
Phytoplankton Calcification in a High-CO2 World
Ocean acidification in response to rising atmospheric CO2 partial pressures is widely expected to reduce calcification by marine organisms. From the mid-Mesozoic, coccolithophores have been major calcium carbonate producers in the world’s oceans, today accounting for about a third of the total marine CaCO3 production. Here, we present laboratory evidence that calcification and net primary production in the coccolithophore species Emiliania huxleyi are significantly increased by high CO2 partial pressures. Field evidence from the deep ocean is consistent with these laboratory conclusions, indicating that over the past 220 years there has been a 40% increase in average coccolith mass. Our findings show that coccolithophores are already responding and will probably continue to respond to rising atmospheric CO2 partial pressures, which has important implications for biogeochemical modeling of future oceans and climate.
Nutrition : The other greenhouse effect
Rising carbon dioxide levels should increase crop yields. But what if their effect on the nutritional value of our food is less benign, asks Ned Stafford.
Responses of soil and water chemistry to mountain pine beetle induced tree mortality in Grand County, Colorado, USA
Pine forest in northern Colorado and southern Wyoming, USA, are experiencing the most severe moun- tain pine beetle epidemic in recorded history, and possible degradation of drinking-water quality is a major concern. The objective of this study was to investigate possible changes in soil and water chemistry in Grand County, Colorado in response to the epidemic, and to identify major controlling influences on stream-water nutrients and C in areas affected by the mountain pine beetle. Soil moisture and soil N increased in soils beneath trees killed by the mountain pine beetle, reflecting reduced evapotranspiration and litter accumulation and decay. No significant changes in stream-water NO3 or dissolved organic C were observed; however, total N and total P increased, possibly due to litter breakdown or increased productivity related to warming air temperatures. Multiple-regression analyses indicated that % of basin affected by mountain pine beetles had minimal influence on stream-water NO3 and dissolved organic C; instead, other basin characteristics, such as percent of the basin classified as forest, were much more important.
Global and regional trends in greenhouse gas emissions from livestock
Following IPCC guidelines (IPCC 2006), we estimate greenhouse gas emissions related to livestock in 237 countries and 11 livestock categories during the period 1961–2010. We find that in 2010 emissions of methane and nitrous oxide related to livestock worldwide represented approximately 9 % of total greenhouse gas (GHG) emissions. Global GHG emissions from livestock increased by 51 % during the analyzed period, mostly due to strong growth of emissions in developing (Non-Annex I) countries (+117 %). In contrast, developed country (Annex I) emissions decreased (−23 %). Beef and dairy cattle are the largest source of livestock emissions (74 % of global livestock emissions). Since developed countries tend to have lower CO2-equivalent GHG emissions per unit GDP and per quantity of product generated in the livestock sector, the amount of wealth generated per unit GHG emitted from the livestock sector can be increased by improving both livestock farming practices in developing countries and the overall state of economic development. Our results reveal important details of how livestock production and associated GHG emissions have occurred in time and space. Discrepancies with higher tiers, demonstrate the value of more detailed analyses, and discourage over interpretation of smaller-scale trends in the Tier 1 results, but do not undermine the value of global Tier 1 analysis.
Genetic signatures of a demographic collapse in a large-bodied forest dwelling primate
It is difficult to predict how current climate change will affect wildlife species adapted to a tropical rainforest environment. Understanding how population dynamics fluctuated in such species throughout periods of past climatic change can provide insight into this issue. The drill (Mandrillus leucophaeus) is a large-bodied rainforest adapted mammal found in West Central Africa. In the middle of this endangered monkey’s geographic range is Lake Barombi Mbo, which has a well-documented palynological record of environmental change that dates to the Late Pleistocene. We used a Bayesian coalescent-based framework to analyze 2,076 base pairs of mitochondrial DNA across wild drill populations to infer past changes in female effective population size since the Late Pleistocene. Our results suggest that the drill underwent a nearly 15-fold demographic collapse in female effective population size that was most prominent during the Mid Holocene (approximately 3-5 Ka). This time period coincides with a period of increased dryness and seasonality across Africa and a dramatic reduction in forest coverage at Lake Barombi Mbo. We believe that these changes in climate and forest coverage were the driving forces behind the drill population decline. Furthermore, the warm temperatures and increased aridity of the Mid Holocene are potentially analogous to current and future conditions faced by many tropical rainforest communities. In order to prevent future declines in population size in rainforest-adapted species such as the drill, large tracts of forest should be protected to both preserve habitat and prevent forest loss through aridification. Bayesian Skyline Plot, bottleneck, climate change, Cross-Sanaga-Bioko forests, drill, Mandrillus.