Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Landscape Partnership Resources Library

Landscape Partnership Resources Library

Rethinking wedges

Stabilizing CO2 emissions at current levels for fifty years is not consistent with either an atmospheric CO2 concentration below 500 ppm or global temperature increases below 2 ◦C. Accepting these targets, solving the climate problem requires that emissions peak and decline in the next few decades, and ultimately fall to near zero. Phasing out emissions over 50 years could be achieved by deploying on the order of 19 ‘wedges’, each of which ramps up linearly over a period of 50 years to ultimately avoid 1 GtC y−1 of CO2 emissions. But this level of mitigation will require affordable carbon-free energy systems to be deployed at the scale of tens of terawatts. Any hope for such fundamental and disruptive transformation of the global energy system depends upon coordinated efforts to innovate, plan, and deploy new transportation and energy systems that can provide affordable energy at this scale without emitting CO2 to the atmosphere.

Read More…

Sectoral contributions to surface water stress in the coterminous United States

Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model which considers regional trends in both water supply and demand. A snapshot of contemporary annual water demand is compared against different water supply regimes, including current average supplies, current extreme-year supplies, and projected future average surface water flows under a changing climate. In addition, we investigate the contributions of different water demand sectors to current water stress. On average, water supplies are stressed, meaning that demands for water outstrip natural supplies in over 9% of the 2103 watersheds examined. These watersheds rely on reservoir storage, conveyance systems, and groundwater to meet current water demands. Overall, agriculture is the major demand-side driver of water stress in the US, whereas municipal stress is isolated to southern California. Water stress introduced by cooling water demands for power plants is punctuated across the US, indicating that a single power plant has the potential to stress water supplies at the watershed scale. On the supply side, watersheds in the western US are particularly sensitive to low flow events and projected long-term shifts in flow driven by climate change. The WaSSI results imply that not only are water resources in the southwest in particular at risk, but that there are also potential vulnerabilities to specific sectors, even in the ‘water-rich’ southeast. Keywords: water resources, surface water, water stress

Read More…

The Latest on Volcanic Eruptions and Climate

2nd paragraph: It is well known that large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with a life- time of several months to about 2 years. The radiative effects of these aerosol clouds produce global cooling and are an important natural cause of climate change. Regional responses include winter warming of Northern Hemisphere continents and weakening of summer Asian and African monsoons. Even though there has not been a large eruption since the eruption of Mount Pinatubo in the Philippines on 15 June 1991, research contin- ues to produce interesting results.

Read More…

The False Spring of 2012, Earliest in North American Record

2nd paragraph: As global climate warms, increasingly warmer springs may combine with the random climatological occurrence of advective freezes, which result from cold air moving from one region to another, to dramatically increase the future risk of false springs, with profound ecological and economic consequences [e.g., Gu et al., 2008; Marino et al., 2011; Augspurger, 2013]. For example, in the false spring of 2012, an event embedded in long-term trends toward earlier spring [e.g., Schwartz et al., 2006], the frost damage to fruit trees totaled half a billion dollars in Michigan alone, prompting the federal government to declare the state a disaster area [Knudson, 2012].

Read More…

Rapid growth in CO2 emissions after the 2008–2009 global financial crisis.pdf

1st paragraph: Global carbon dioxide emissions from fossil-fuel combustion and cement production grew 5.9% in 2010, surpassed 9 Pg of carbon (Pg C) for the first time, and more than offset the 1.4% decrease in 2009. The impact of the 2008–2009 global financial crisis (GFC) on emissions has been short-lived owing to strong emissions growth in emerging economies, a return to emissions growth in developed economies, and an increase in the fossil-fuel intensity of the world economy.

Read More…

Persistent reduced ecosystem respiration after insect disturbance in high elevation forests

Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no increase in ecosystem respiration from scales of several square metres up to an 84 km2 valley. Rather, we found comparable declines in both gross primary productivity and respiration suggesting little change in net flux, with a transitory recovery of respiration 6–7 years after mortality associated with increased incorporation of leaf litter C into soil organic matter, followed by further decline in years 8–10. The mechanism of the impact of tree mortality caused by these biotic disturbances is consistent with reduced input rather than increased output of carbon. Keywords Carbon balance, disturbance, ecosystem respiration, gross primary productivity, insect outbreak, lodgepole pine, mountain pine beetle, mountain West, subalpine forest.

Read More…

Global shifts towards positive species interactions with increasing environmental stress

The study of positive species interactions is a rapidly evolving field in ecology. Despite decades of research, controversy has emerged as to whether positive and negative interactions predictably shift with increasing environmental stress as hypothesised by the stress-gradient hypothesis (SGH). Here, we provide a synthesis of 727 tests of the SGH in plant communities across the globe to examine its generality across a variety of ecological factors. Our results show that plant interactions change with stress through an outright shift to facilitation (survival) or a reduction in competition (growth and reproduction). In a limited number of cases, plant interactions do not respond to stress, but they never shift towards competition with stress. These findings are consistent across stress types, plant growth forms, life histories, origins (invasive vs. native), climates, ecosystems and methodologies, though the magnitude of the shifts towards facilitation with stress is dependent on these factors. We suggest that future studies should employ standardised defini- tions and protocols to test the SGH, take a multi-factorial approach that considers variables such as plant traits in addition to stress, and apply the SGH to better understand how species and communities will respond to environmental change. Keywords Biotic interactions, community ecology, ecosystems and climates, environmental stress, facilitation, invasive species, meta-analysis, plant traits, the stress-gradient hypothesis.

Read More…

How does climate change influence demographic processes of widespread species? Lessons from the comparative analysis of contrasted populations of roe deer

How populations respond to climate change depends on the interplay between life history, resource avail- ability, and the intensity of the change. Roe deer are income breeders, with high levels of allocation to reproduction, and are hence strongly constrained by the availability of high quality resources during spring. We investigated how recent climate change has influenced demographic processes in two populations of this widespread species. Spring began increasingly earlier over the study, allowing us to identify 2 periods with contrasting onset of spring. Both populations grew more slowly when spring was early. As expected for a long-lived and iteroparous species, adult survival had the greatest potential impact on population growth. Using perturbation analyses, we measured the relative contribution of the demographic parameters to observed variation in population growth, both within and between periods and populations. Within peri- ods, the identity of the critical parameter depended on the variance in growth rate, but variation in recruit- ment was the main driver of observed demographic change between periods of contrasting spring earliness. Our results indicate that roe deer in forest habitats cannot currently cope with increasingly early springs. We hypothesise that they should shift their distribution to richer, more heterogeneous landscapes to offset energetic requirements during the critical rearing stage. Keywords Age-structured populations, demographic change, income breeding, perturbation analysis, population growth, Recruitment, Stochastic environment, Survival.

Read More…

Genetic diversity in widespread species is not congruent with species richness in alpine plant communities

The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation plan- ning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies. Keywords alpine vascular plants, Alps, biodiversity conservation, Carpathians, genetic diversity, species richness.

Read More…

Maximizing return on conservation investment in the conterminous USA

Efficient conservation planning requires knowledge about conservation targets, threats to those targets, costs of conservation and the marginal return to additional conservation efforts. Systematic conservation planning typically only takes a small piece of this complex puzzle into account. Here, we use a return-on- investment (ROI) approach to prioritise lands for conservation at the county level in the conterminous USA. Our approach accounts for species richness, county area, the proportion of species’ ranges already protected, the threat of land conversion and land costs. Areas selected by a complementarity-based greedy heuristic using our full ROI approach provided greater averted species losses per dollar spent compared with areas selected by heuristics accounting for richness alone or richness and cost, and avoided acquiring lands not threatened with conversion. In contrast to traditional prioritisation approaches, our results high- light conservation bargains, opportunities to avert the threat of development and places where conservation efforts are currently lacking. Keywords Benefit cost ratio, conservation planning, economic cost, habitat protection, heuristic, land prices, reserve selection, resource allocation.

Read More…

Impacts of climate change on the future of biodiversity

Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this review, we first examine the different possible effects of climate change that can operate at individual, population, species, community, ecosystem and biome scales, notably showing that species can respond to climate change challenges by shifting their climatic niche along three non-exclusive axes: time (e.g. phenology), space (e.g. range) and self (e.g. physiology). Then, we present the principal specificities and caveats of the most common approaches used to estimate future biodiversity at global and sub- continental scales and we synthesise their results. Finally, we highlight several challenges for future research both in theoretical and applied realms. Overall, our review shows that current estimates are very variable, depending on the method, taxonomic group, biodiversity loss metrics, spatial scales and time periods considered. Yet, the majority of models indicate alarming consequences for biodiversity, with the worst- case scenarios leading to extinction rates that would qualify as the sixth mass extinction in the history of the earth. Keywords Biodiversity, climate change, species extinctions.

Read More…

Interactions and Linkages among Ecosystems during Landscape Evolution

We synthesize our findings of studies in Glacier Bay National Park and Preserve, southeastern Alaska, to elucidate interactions and linkages among terrestrial, lake, stream, and marine intertidal ecosystems as the landscape evolves following ice recession. Development in each ecosystem is initially dominated by physical processes. Over time, biotic control becomes increasingly important, although the extent of biotic control varies among ecosystems. The changes occurring in the four ecosystems are linked by landscape processes, with the nature and strength of these linkages changing through time. Change in one ecosystem has a major influence on the nature and direction of change in other ecosystems. Soil development and woody biomass accumulation on land provide an inertia that is unmatched in stream, lake, or intertidal systems. It is important that researchers and managers understand this science of change, at different spatial and temporal scales, in order to predict future states of ecological systems. The dynamics of change that we document at Glacier Bay during primary succession have important implications for managing the system with respect to anthropogenic change. Keywords: landscape, development, ecosystems, succession, linkages

Read More…

The cost of policy simplification in conservation incentive programs

Incentive payments to private landowners provide a common strategy to conserve biodiversity and enhance the supply of goods and services from ecosystems. To deliver cost-effective improvements in biodiversity, payment schemes must trade-off inefficiencies that result from over-simplified policies with the administrative burden of implementing more complex incentive designs. We examine the effectiveness of different payment schemes using field parameterized, ecological economic models of extensive grazing farms. We focus on profit maximising farm management plans and use bird species as a policy-relevant indicator of biodiversity. Common policy simplifications result in a 49–100% loss in biodiversity benefits depending on the conservation target chosen. Failure to differentiate prices for conservation improvements in space is particularly problematic. Additional implementation costs that accompany more complicated policies are worth bearing even when these constitute a substantial proportion (70% or more) of the payments that would otherwise have been given to farmers. Keywords Agriculture, agri-environment scheme, biodiversity, cost-effectiveness, ecological economics, grazing, incentive

Read More…

Functional response of U.S. grasslands to the early 21st-century drought

Grasslands across the United States play a key role in regional livelihood and national food security. Yet, it is still unclear how this important resource will respond to the prolonged warm droughts and more intense rainfall events predicted with climate change. The early 21st-century drought in the southwestern United States resulted in hydroclimatic conditions that are similar to those expected with future climate change. We investigated the impact of the early 21st-century drought on aboveground net primary production (ANPP) of six desert and plains grasslands dominated by C4 (warm season) grasses in terms of significant deviations between observed and expected ANPP. In desert grasslands, drought-induced grass mortality led to shifts in the functional response to annual total precipitation (PT), and in some cases, new species assemblages occurred that included invasive species. In contrast, the ANPP in plains grasslands exhibited a strong linear function of the current-year PT and the previous-year ANPP, despite prolonged warm drought. We used these results to disentangle the impacts of interannual total precipitation, intra-annual precipitation patterns, and grassland abundance on ANPP, and thus generalize the functional response of C4 grasslands to predicted climate change. This will allow managers to plan for predictable shifts in resources associated with climate change related to fire risk, loss of forage, and ecosystem services. Key words: climate change; desert; extreme events; grassland production; invasive species; plains; precipitation variability; resilience; warm drought.

Read More…

Two Modes of North American Drought from Instrumental and Paleoclimatic Data*

Droughts, which occur as a part of natural climate variability, are expected to increase in frequency and/or severity with global climate change. An improved understanding of droughts and their association with atmospheric circulation will add to the knowledge about the controls on drought, and the ways in which changes in climate may impact droughts. In this study, 1) major drought patterns across the United States have been defined, 2) the robustness of these patterns over time using tree-ring-based drought reconstructions have been evaluated, and 3) the drought patterns with respect to global atmospheric pressure patterns have been assessed. From this simple assessment, it is suggested that there are two major drought patterns across North America, which together account for about 30% of the total variance in drought patterns—one resembles the classic ENSO teleconnection, and the other displays an east–west drought dipole. The same two patterns are evident in the instrumental data and the reconstructed drought data for two different periods, 1404–2003 and 900–1350. The 500-mb circulation patterns associated with the two drought patterns suggest that the controls on drought may come from both Northern Hemisphere and tropical sources. The two drought patterns, and presumably their associated circulation patterns, vary in strength over time, indicating the combined effects of the two patterns on droughts over the past millennium.

Read More…

Rapid evolution of flowering time by an annual plant in response to a climate fluctuation

Ongoing climate change has affected the ecological dynamics of many species and is expected to impose natural selection on ecologically important traits. Droughts and other anticipated changes in precipitation may be particularly potent selective fac- tors, especially in arid regions. Here we demonstrate the evolutionary response of an annual plant, Brassica rapa, to a recent climate fluctuation resulting in a multiyear drought. Ancestral (predrought) genotypes were recovered from stored seed and raised under a set of common environments with descendant (postdrought) genotypes and with ancestor􏰶descendant hybrids. As predicted, the abbreviated growing seasons caused by drought led to the evolution of earlier onset of flowering. Descendants bloomed earlier than ancestors, advancing first flowering by 1.9 days in one study population and 8.6 days in another. The inter- mediate flowering time of ancestor􏰶descendant hybrids supports an additive genetic basis for divergence. Experiments confirmed that summer drought selected for early flowering, that flowering time was heritable, and that selection intensities in the field were more than sufficient to account for the observed evolutionary change. Natural selection for drought escape thus appears to have caused adaptive evolution in just a few generations. A systematic effort to collect and store propagules from suitable species would provide biologists with materials to detect and elucidate the genetic basis of further evolutionary shifts driven by climate change. contemporary evolution 􏰧 global climate change 􏰧 life history theory 􏰧 local adaptation 􏰧 plant phenology

Read More…

Limits to adaptation

An actor-centered, risk-based approach to defining limits to social adaptation provides a useful analytic framing for identifying and anticipating these limits and informing debates over society’s responses to climate change.

Read More…

What is the future of conservation?

In recent years, some conservation biologists and con- servation organizations have sought to refocus the field of conservation biology by de-emphasizing the goal of protecting nature for its own sake in favor of protecting the environment for its benefits to humans. This ‘new conservation science’ (NCS) has inspired debate among academics and conservationists and motivated funda- mental changes in the world’s largest conservation groups. Despite claims that NCS approaches are sup- ported by biological and social science, NCS has limited support from either. Rather, the shift in motivations and goals associated with NCS appear to arise largely from a belief system holding that the needs and wants of humans should be prioritized over any intrinsic or inherent rights and values of nature.

Read More…

TOP PREDATORS AS CONSERVATION TOOLS

We review the ecological rationale behind the potential compatibility between top predators and biodiversity conservation, and examine their effectiveness as surrogate species. Evidence suggests that top predators promote species richness or are spatio-temporally associated with it for six causative or noncausative reasons: resource facilitation, trophic cascades, dependence on ecosystem productivity, sensitivity to dysfunctions, selection of heterogeneous sites and links to multiple ecosystem components. Therefore, predator-centered conservation may deliver certain biodiversity goals. To this aim, predators have been employed in conservation as keystone, umbrella, sentinel, flagship, and indicator species. However, quantitative tests of their surrogate-efficacy have been astonishingly few. Evidence suggests they may function as structuring agents and biodiversity indicators in some ecosystems but not others, and that they perform poorly as umbrella species; more consensus exists for their efficacy as sentinel and flagship species. Conservation biologists need to use apex predators more cautiously, as part of wider, context- dependent mixed strategies.

Read More…

Negative density-dependent dispersal in the American black bear (Ursus americanus) revealed by noninvasive sampling and genotyping

Although the dispersal of animals is influenced by a variety of factors, few studies have used a condition-dependent approach to assess it. The mechanisms underlying dispersal are thus poorly known in many species, especially in large mammals. We used 10 microsatellite loci to examine population density effects on sex-specific dispersal behavior in the American black bear, Ursus americanus. We tested whether dispersal increases with population density in both sexes. Fine-scale genetic struc- ture was investigated in each of four sampling areas using Mantel tests and spatial autocorrelation analyses. Our results revealed male-biased dispersal pattern in low- density areas. As population density increased, females appeared to exhibit philopa- try at smaller scales. Fine-scale genetic structure for males at higher densities may indicate reduced dispersal distances and delayed dispersal by subadults.

Read More…