Allowable carbon emissions lowered by multiple climate targets
Climate targets are designed to inform policies that would limit the
magnitude and impacts of climate change caused by anthropogenic
emissions of greenhouse gases and other substances. The target
that is currently recognized by most world governments1 places a
limit of two degrees Celsius on the global mean warming since
preindustrial times. This would require large sustained reductions
in carbon dioxide emissions during the twenty-first century and
beyond2–4. Such a global temperature target, however, is not sufficient
to control many other quantities, such as transient sea level
rise5
, ocean acidification6,7 and net primary production on land8,9.
Here, using an Earth system model of intermediate complexity
(EMIC) in an observation-informed Bayesian approach, we show
that allowable carbon emissions are substantially reduced whenmultiple
climate targets are set. We take into account uncertainties in
physical and carbon cycle model parameters, radiative efficiencies10,
climate sensitivity11 and carbon cycle feedbacks12,13 along with a
large set of observational constraints. Within this framework, we
explore a broad range of economically feasible greenhouse gas scenarios
from the integrated assessment community14–17 to determine
the likelihood of meeting a combination of specific global
and regional targets under various assumptions. For any given
likelihood of meeting a set of such targets, the allowable cumulative
emissions are greatly reduced from those inferred from the temperature
target alone. Therefore, temperature targets alone are unable
to comprehensively limit the risks from anthropogenic emissions.
Publication Date: 2013
Credits: NATURE 2013 doi:10.1038/nature12269
Fair Use OK
DOWNLOAD FILE — PDF document, 534 kB (547,158 bytes)