Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Enhanced poleward moisture transport and amplified northern high-latitude wetting trend

Enhanced poleward moisture transport and amplified northern high-latitude wetting trend

Observations and climate change projections forced by greenhouse gas emissions have indicated a wetting trend in northern high latitudes, evidenced by increasing Eurasian Arctic river discharges (1–3). The increase in river discharge has accelerated in the latest decade and an unprecedented, record high discharge occurred in 2007 along with an extreme loss of Arctic summer sea-ice cover (4–6). Studies have ascribed this increasing discharge to various factors attributable to local global warming effects, including intensifying precip- itation minus evaporation, thawing permafrost, increasing greenness and reduced plant transpiration7–11. However, no agreement has been reached and causal physical processes remain unclear. Here we show that enhancement of poleward atmospheric moisture transport (AMT) decisively contributes to increased Eurasian Arctic river discharges. Net AMT into the Eurasian Arctic river basins captures 98% of the gauged climatological river discharges. The trend of 2.6% net AMT increase per decade accounts well for the 1.8% per decade increase in gauged discharges and also suggests an increase in underlying soil moisture. A radical shift of the atmospheric circulation pattern induced an unusually large AMT and warm surface in 2006–2007 over Eurasia, resulting in the record high discharge.

Credits: NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION |PUBLISHED ONLINE: 29 JULY 2012 | DOI: 10.1038/NCLIMATE1631

Fair Use OK

DOWNLOAD FILE — PDF document, 1,217 kB (1,246,986 bytes)