Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorologic Extremes

The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorologic Extremes

In this paper, we present preliminary results showing that the two record setting extreme events during 2010 summer, i.e., the Russian heat wave/wild fires and Pakistan flood were physically connected. We find that the Russian heat wave was associated with the development of an extraordinary strong and prolonged extratropical atmospheric blocking event, and excitation of a large-scale atmospheric Rossby wavetrain spanning western Russia, Kazakhstan, and northwestern China/Tibetan Plateau region. The southward penetration of upper level vorticity perturbations in the leading trough of the Rossby wave was instrumental in triggering anomalously heavy rain events over northern Pakistan and vicinity in mid-to-late July. Also shown are evidences that the Russian heat wave was amplified by a positive feedback through changes in surface energy fluxes between the atmospheric blocking pattern and an underlying extensive land region with below- normal soil moisture. The Pakistan heavy rain events were amplified and sustained by strong anomalous southeasterly flow along the Himalayas foothills and abundant moisture transport from the Bay of Bengal in connection with the northward propagation of the monsoonal intraseasonal oscillation. This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is being posted so soon after acceptance, it has not yet been copyedited, formatted, or processed by AMS Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please be aware that there will be visual differences and possibly some content differences between this version and the final published version.

Credits: Journal of Hydrometeorology

Fair Use OK

DOWNLOAD FILE — PDF document, 5,551 kB (5,684,572 bytes)