A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa
Observations and simulations link anthropogenicgreenhouse and aerosol emissions with rapidly
increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60 years, the Indian Ocean warmed two to three times faster than the central tropical Pacific, extending the tropical warm pool to the west by *40 longitude ([4,000 km). This propensity toward rapid warming in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55E–140W) since at least 1948, explaining more variance than anomalies associated with the El Nin˜o-Southern Oscillation (ENSO). In the atmosphere, the primary mode of variability has been a corresponding trend
toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980–2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ‘long-rains’ season of March–June. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ‘El Nin˜o-like’ conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the Warm Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in ENSO is realized. These results have important food security implications,
informing agricultural development, environmental conservation, and water resource planning.
Publication Date: 2010
Credits: Climate Dynamics DOI 10.1007/s00382-010-0984-y
DOWNLOAD FILE — PDF document, 1,537 kB (1,574,571 bytes)