TRY – a global database of plant traits
Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and
their organs – determine how primary producers respond to environmental factors, affect other trophic levels,
influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity.
Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and
functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a
wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far
93 trait databases have been contributed. The data repository currently contains almost three million trait entries for
69 000 out of the world’s 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and
regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data
analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of
variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is
also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation
models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within
PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by
state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global
database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for
synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial
vegetation in Earth system models.
Publication Date: 2011
DOWNLOAD FILE — PDF document, 1,118 kB (1,145,249 bytes)