Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests

Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests

From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world’s highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n 􏰀 44) than for sampled tropical (n 􏰀 36) and boreal (n 􏰀 52) forests (n is number of sites per forest biome). Spatially averaged Intergovern- mental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change re- garding forest conservation, management, and restoration. Conserv- ing forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest’s carbon sequestration potential also should be recognized. Eucalyptus regnans 􏰂 climate mitigation 􏰂 primary forest 􏰂 deforestation and degradation 􏰂 temperate moist forest biome

Credits: www.pnas.org􏰃cgi􏰃doi􏰃10.1073􏰃pnas.0901970106 PNAS Early Edition

Fair Use OK

DOWNLOAD FILE — PDF document, 2,267 kB (2,322,128 bytes)