Relationship between fire, climate oscillations, and drought in British Columbia, Canada, 1920–2000
Climate oscillations such as El Nin ̃o–Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) are known to affect temperature and precipitation regimes and fire in different regions of the world. Understanding the relationships between climate oscillations, drought, and area burned in the past is required for anticipating potential impacts of regional climate change and for effective wildfire-hazard management. These relationships have been investigated for British Columbia (BC), Canada, either as part of national studies with coarse spatial resolution or for single ecosystems. Because of BC’s complex terrain and strong climatic gradients, an investigation with higher spatial resolution may allow for a spatially complete but differentiated picture. In this study, we analyzed the annual proportion burned– climate oscillation–drought relationships for the province’s 16 Biogeoclimatic Ecosystem Classification (BEC) zones. Analyses are based on a digital, spatially explicit fire database, climate oscillation indices, and monthly precipitation and temperature data with a spatial resolution of 400 m for the period 1920–2000. Results show that (1) fire variability is better related to summer drought than to climate oscillations, and that (2) fire variability is most strongly related to both, climate oscillations and summer drought in southeastern BC. The relationship of area burned and summer drought is strong for lower elevations in western BC as well. The influence of climate oscillations on drought is strongest and most extensive in winter and spring, with higher indices being related to drier conditions. Winter and spring PDO and additive winter and spring PDO ENSO indices show BC’s most extensive significant relationship to fire variability. Western BC is too wet to show a moisture deficit in summer that would increase annual area burned due to teleconnections.
Keywords: area burned, aridity index, Canada, ENSO, PDO, wildfire
Credits: Global Change Biology (2009)
Fair Use OK
DOWNLOAD FILE — PDF document, 458 kB (469,046 bytes)