Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Phylogenetic trees and the future of mammalian biodiversity

Phylogenetic trees and the future of mammalian biodiversity

Phylogenies describe the origins and history of species. However, they can also help to predict species’ fates and so can be useful tools for managing the future of biodiversity. This article starts by sketching how phylogenetic, geographic, and trait information can be combined to elucidate present mammalian diversity patterns and how they arose. Recent diversification rates and standing diversity show different geographic patterns, indicating that cra- dles of diversity have moved over time. Patterns in extinction risk reflect both biological differences among mammalian lineages and differences in threat intensity among regions. Phylogenetic com- parative analyses indicate that for small-bodied mammals, extinc- tion risk is governed mostly by where the species live and the intensity of the threats, whereas for large-bodied mammals, eco- logical differences also play an important role. This modeling approach identifies species whose intrinsic biology renders them particularly vulnerable to increased human pressure. We outline how the approach might be extended to consider future trends in anthropogenic drivers, to identify likely future battlegrounds of mammalian conservation, and the likely casualties. This framework could help to highlight consequences of choosing among different future climatic and socioeconomic scenarios. We end by discussing priority-setting, showing how alternative currencies for diversity can suggest very different priorities. We argue that aiming to maximize long-term evolutionary responses is inappropriate, that conservation planning needs to consider costs as well as benefits, and that proactive conservation of largely intact systems should be part of a balanced strategy. extinction risk 􏰧 latent risk 􏰧 mammals

Credits: PNAS 􏰧 August 12, 2008

Fair Use OK

DOWNLOAD FILE — PDF document, 1,023 kB (1,048,454 bytes)