Forecasting the response of Earth’s surface to future climatic and land use changes: A review of methods and research needs
In the future, Earth will be warmer, precipitation events will be more extreme, global mean
sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes
will also occur at an accelerated rate as developed areas increase in size and population density. We now
have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC)
that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do
not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we
have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models
and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system
modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to
forecast changes in the state of Earth’s surface as a result of likely future C&LUC. We also propose strategies
for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration
across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the
importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment
transport, as well as the importance of alternate stable states and extreme, rare events for understanding
and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process
zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in
detail.
Credits: Earth's Future Accepted article online 26 MAY 2015 10.1002/2014EF000290
Fair Use OK
DOWNLOAD FILE — PDF document, 1,252 kB (1,282,149 bytes)