Predicting ecosystem shifts requires new approaches that integrate the effects of climate change across entire systems
Most studies that forecast the ecological conse- quences of climate change target a single species and a single life stage. Depending on climatic impacts on other life stages and on interacting species, however, the results from simple exper- iments may not translate into accurate predictions of future ecological change. Research needs to move beyond simple experimental studies and environmental envelope projections for single species towards identifying where ecosystem change is likely to occur and the drivers for this change. For this to happen, we advocate research directions that (i) identify the critical species within the target ecosystem, and the life stage(s) most susceptible to changing conditions and (ii) the key interactions between these species and components of their broader ecosystem. A combined approach using macroecology, experimentally derived data and modelling that incorporates energy budgets in life cycle models may identify critical abiotic conditions that disproportionately alter important ecological processes under forecasted climates.
Keywords: climate change; ocean acidification; global warming; species interactions; ecosystem shift; productivity and consumption
Credits: Biol. Lett. (2012) 8, 164–166
Fair Use OK
DOWNLOAD FILE — PDF document, 133 kB (136,429 bytes)