Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4408 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Contemporary Evolution of Reproductive Isolation and Phenotypic Divergence in Sympatry along a Migratory Divide
Understanding the influence of human-induced changes on the evolutionary trajectories of populations is a fundamental problem [1, 2]. The evolution of reproductive isolation in sympatry is rare, relying on strong selection along steep ecological gradients [3–7]. Improved wintering conditions owing to human activities promoted the recent establishment of a migratory divide in Central European blackcaps (Sylvia atricapilla) [8, 9]. Here, we show that differential migratory orientation facilitated reproductive isolation of sympatric populations within <30 generations. The genetic divergence in sympatry exceeds that of allopatric blackcaps separated by 800 km and is associated with diverse phenotypic divergence. Blackcaps migrating along the shorter northwestern route have rounder wings and narrower beaks and differ in beak and plumage color from sympatric south- west-migrating birds. We suggest that distinct wing and beak morphologies are ecomorphological adaptations resulting from divergent, multifarious selection regimes during migration. We hypothesize that restricted gene flow accelerates the evolution of adaptive phenotypic divergence toward the contrasting selection regimes. Similar adaptive processes can occur in more than 50 bird species that recently changed their migratory behavior [10, 11] or in species with low migratory connectivity. Our study thus illustrates how ecological changes can rapidly drive the contemporary evolution of ecotypes.
Located in Resources / Climate Science Documents
File PDF document Contemporary ocean warming and freshwater conditions are related to later sea age at maturity in Atlantic salmon spawning in Norwegian rivers
Atlantic salmon populations are reported to be declining throughout its range, raising major management concerns. Variation in adult fish abundance may be due to variation in survival, growth, and timing of life history decisions. Given the complex life history, utilizing highly divergent habitats, the reasons for declines may be multiple and difficult to disentangle. Using recreational angling data of two sea age groups, one-sea-winter (1SW) and two-sea-winter (2SW) fish originated from the same smolt year class, we show that sea age at maturity of the returns has increased in 59 Norwegian rivers over the cohorts 1991– 2005. By means of linear mixed-effects models we found that the proportion of 1SW fish spawning in Norway has decreased concomitant with the increasing sea surface temperature experienced by the fish in autumn during their first year at sea. Furthermore, the decrease in the proportion of 1SW fish was influenced by freshwater conditions as measured by water discharge during summer months 1 year ahead of seaward migration. These results suggest that part of the variability in age at maturity can be explained by the large-scale changes occurring in the north-eastern Atlantic pelagic food web affecting postsmolt growth, and by differences in river conditions influencing presmolt growth rate and later upstream migration.
Located in Resources / Climate Science Documents
Image PNG image Contents_Tab
Located in Help / Help Images
File Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America
Widespread synchronous wildfires driven by climatic variation, such as those that swept western North America during 1996, 2000, and 2002, can result in major environmental and societal impacts. Understanding relationships between continental-scale patterns of drought and modes of sea surface temperatures (SSTs) such as El Nin ̃o-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) may explain how interannual to multidecadal variability in SSTs drives fire at continental scales. We used local wildfire chronologies recon- structed from fire scars on tree rings across western North America and independent reconstructions of SST developed from tree-ring widths at other sites to examine the relationships of multicentury patterns of climate and fire synchrony. From 33,039 annually resolved fire-scar dates at 238 sites (the largest paleofire record yet assembled), we examined forest fires at regional and subconti- nental scales. Since 1550 CE, drought and forest fires covaried across the West, but in a manner contingent on SST modes. During certain phases of ENSO and PDO, fire was synchronous within broad subregions and sometimes asynchronous among those re- gions. In contrast, fires were most commonly synchronous across the West during warm phases of the AMO. ENSO and PDO were the main drivers of high-frequency variation in fire (interannual to decadal), whereas the AMO conditionally changed the strength and spatial influence of ENSO and PDO on wildfire occurrence at multidecadal scales. A current warming trend in AMO suggests that we may expect an increase in widespread, synchronous fires across the western U.S. in coming decades. Atlantic Multidecadal Oscillation 􏰅 El Nino Southern Oscillation 􏰅 fire history network 􏰅 ocean warming 􏰅 Pacific Decadal Oscillation
Located in Resources / Climate Science Documents
File PDF document Continuous flux of dissolved black carbon from a vanished tropical forest biome
Humans have used fire extensively as a tool to shape Earth’s vegetation. The slash-and-burn destruction of Brazil’s Atlantic forest, which once covered over 1.3 million km2 of present-day Brazil and was one of the largest tropical forest biomes on Earth1, is a prime example. Here, we estimate the amount of black carbon generated by the burning of the Atlantic forest, using historical records of land cover, satellite data and black carbon conversion ratios. We estimate that before 1973, destruction of the Atlantic forest generated 200–500 million tons of black carbon. We then estimate the amount of black carbon exported from this relict forest between 1997 and 2008, using measurements of polycyclic aromatic black carbon collected from a large river draining the region, and a continuous record of river discharge. We show that dissolved black carbon (DBC) continues to be mobilized from the watershed each year in the rainy season, despite the fact that widespread forest burning ceased in 1973. We estimate that the river exports 2,700 tons of DBC to the ocean each year. Scaling our findings up, we estimate that 50,000–70,000 tons of DBC are exported from the former forest each year. We suggest that an increase in black carbon production on land could increase the size of the refractory pool of dissolved organic carbon in the deep ocean.
Located in Resources / Climate Science Documents
Contribute
Contribute
The SE FireMap will serve as a critical decision support tool for the fire community. As such, engaging a diverse group of stakeholders for feedback on use-cases, design preferences and other recommendations has been identified as a key element to vet and validate the project’s scoping phase.
Contributors
File PDF document Controls on Annual Forest Carbon Storage: Lessons from the Past and Predictions for the Future
The temperate forests of North America may play an important role in future carbon (C) sequestration strategies. New, multiyear, ecosystem-scale C cycling studies are providing a process-level understanding of the factors controlling annual forest C storage. Using a combination of ecological and meteorological methods, we quantified the response of annual C storage to historically widespread disturbances, forest succession, and climate variation in a common forest type of the upper Great Lakes region. At our study site in Michigan, repeated clear-cut harvesting and fire disturbance resulted in a lasting decrease in annual forest C storage. However, climate variation exerts a strong control on C storage as well, and future climate change may substantially reduce annual C storage by these forests. Annual C storage varies through ecological succession by rising to a maximum and then slowly declining in old-growth stands. Effective forest C sequestration requires the management of all C pools, including traditionally managed pools such as bole wood and also harvest residues and soils. Keywords: forests, carbon, climate change, succession, disturbance
Located in Resources / Climate Science Documents
File PDF document Convey 1983.pdf
Located in Resources / TRB Library / CLA-COO