Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4408 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
The Present and Future Possibilities of Landscape Scale Conservation: AppLCC Ethnographic Study Video of Presentation
The Landscape Conservation Cooperative (LCC) program was created under a secretarial order to develop regional conservation partnerships – under the Department of the Interior – that aimed to coordinate regional conservation planning in response to climate change impacts. Because they were partner-driven efforts, each of the 22 LCCs followed a distinct trajectory and implemented diverse projects, meaning that there is value in exploring how specific LCCs, such as the AppLCC, approached regional conservation. This study assesses the successes, limitations, and impacts of the AppLCC, with the aim of providing insights for future regional conservation partnership.
Located in Research / / Integrating Cultural Resource Preservation at a Landscape Level / Cultural Resources Fellowship
File PDF document The Problem of Perfection.pdf
Located in Resources / TRB Library / NIC-PEK
File PDF document The proportionality of global warming to cumulative carbon emissions
The global temperature response to increasing atmospheric CO2 is often quantified by metrics such as equilibrium climate sensitivity and transient climate response1. These approaches, however, do not account for carbon cycle feedbacks and therefore do not fully represent the net response of the Earth system to anthropogenic CO2 emissions. Climate–carbon modelling experiments have shown that: (1) the warming per unit CO2 emitted does not depend on the background CO2 concentration2; (2) the total allowable emissions for climate stabilization do not depend on the timing of those emissions3–5; and (3) the temperature response to a pulse of CO2 is approximately constant on timescales of decades to centuries3,6–8. Here we generalize these results and show that the carbon–climate response (CCR), defined as the ratio of temper- ature change to cumulative carbon emissions, is approximately independent of both the atmospheric CO2 concentration and its rate of change on these timescales. From observational constraints, we estimate CCR to be in the range 1.0–2.1 6C per trillion tonnes of carbon (TtC) emitted (5th to 95th percentiles), consistent with twenty-first-century CCR values simulated by climate–carbon models. Uncertainty in land-use CO2 emissions and aerosol forcing, however, means that higher observationally constrained values cannot be excluded. The CCR, when evaluated from climate– carbon models under idealized conditions, represents a simple yet robust metric for comparing models, which aggregates both climate feedbacks and carbon cycle feedbacks. CCR is also likely to be a useful concept for climate change mitigation and policy; by combining the uncertainties associated with climate sensitivity, carbon sinks and climate–carbon feedbacks into a single quantity, the CCR allows CO2-induced global mean temperature change to be inferred directly from cumulative carbon emissions.
Located in Resources / Climate Science Documents
File PDF document The rebound effect is overplayed
Increasing energy efficiency brings emissions savings. Claims that it backfires are a distraction, say Kenneth Gillingham and colleagues.
Located in Resources / Climate Science Documents
File PDF document The rebound effect is overplayed
Increasing energy efficiency brings emissions savings. Claims that it backfires are a distraction, say Kenneth Gillingham and colleagues.
Located in Resources / Climate Science Documents
File PDF document The Relative Impact of Harvest and Fire upon Landscape-Level Dynamics of Older Forests: Lessons from the Northwest Forest Plan
Interest in preserving older forests at the landscape level has increased in many regions, including the Pacific Northwest of the United States. The North- west Forest Plan (NWFP) of 1994 initiated a sig- nificant reduction in the harvesting of older forests on federal land. We used historical satellite imagery to assess the effect of this reduction in relation to: past harvest rates, management of non-federal forests, and the growing role of fire. Harvest rates in non-federal large-diameter forests (LDF) either decreased or remained stable at relatively high rates following the NWFP, meaning that harvest reductions on federal forests, which cover half of the region, resulted in a significant regional drop in the loss of LDF to harvest. However, increased losses of LDF to fire outweighed reductions in LDF harvest across large areas of the region. Elevated fire levels in the western United States have been correlated to changing climatic conditions, and if recent fire patterns persist, preservation of older forests in dry ecosystems will depend upon practical and coordi- nated fire management across the landscape. Key words: disturbance; fire; landsat; forest management; Northwest Forest Plan; old growth.
Located in Resources / Climate Science Documents
File PDF document The Rescaling of Global Environmental Politics
Key Words governance, international, linked issues, networks, scale Abstract In the past half-century, the practice and study of global environmental politics and governance have been dramatically rescaled. They have be- come increasingly complex and interconnected with respect to the level (between local and global) at which they take place, the range of actors engaged in them, and the linkages between them and nominally nonen- vironmental issues. Global environmental politics and governance have been rescaled vertically down toward provincial and municipal gov- ernments and up toward supranational regimes. They have also been rescaled horizontally across regional and sectoral organizations and net- works and across new issues, such as development, security, and trade among others. This rescaling reflects shifts in the magnitude, complexity, and interconnectedness of the global environmental problems humans face as well as epistemological shifts in how humans understand and respond to these problems, and rescaling has implications for both the practice and study of global environmental politics.
Located in Resources / Climate Science Documents
File PDF document The River Discontinuum: Applying Beaver Modifications to Baseline Conditions for Restoration of Forested Headwaters
Billions of dollars are being spent in the United States to restore rivers to a desired, yet often unknown, reference condition. In lieu of a known reference, practitioners typically assume the paradigm of a connected watercourse. Geological and ecological processes, however, create patchy and discontinuous fluvial systems. One of these processes, dam building by North American beavers (Castor canadensis), generated discontinuities throughout precolonial river systems of northern North America. Under modern conditions, beaver dams create dynamic sequences of ponds and wet meadows among free-flowing segments. One beaver impoundment alone can exceed 1000 meters along the river, flood the valley laterally, and fundamentally alter biogeochemical cycles and ecological structures. In this article, we use hierarchical patch dynamics to investigate beaver-mediated discontinuity across spatial and temporal scales. We then use this conceptual model to generate testable hypotheses addressing channel geomorphology, natural flow regime, water quality, and biota, given the importance of these factors in river restoration. Keywords: fluvial geomorphology, hierarchical patch dynamics, stream ecology, river continuum concept, river restoration
Located in Resources / Climate Science Documents
File PDF document The Role of Livestock Production in Carbon and Nitrogen Cycles
This review looks at the role of the livestock sector in carbon (C) and nitrogen (N) cycles from a global perspective and considers impacts at the various stages of the commodity chain. With regard to livestock, N and C cycles are closely connected to livestock’s role in land use and land-use change. Livestock’s land use includes grazing land and cropland dedicated to the production of feed crops and fodder. Considering emissions along the entire commodity chain, livestock currently contribute about 18% to the global warming effect. Live- stock contribute about 9% of total carbon dioxide (CO2) emissions, but 37% of methane (CH4), and 65% of nitrous oxide (N2O). The latter will substantially increase over the coming decades, as the pasture land is currently at maximum expanse in most regions; future expansion of the livestock sector will increasingly be crop based. The chapter also reviews mitigation options to reduce C and N emissions from livestock’s land use, production, and animal waste.
Located in Resources / Climate Science Documents
File PDF document The Role of Local Governance and Institutions in Livelihoods Adaptation to Climate Change
The most important implications of climate change from the perspective of the World Bank concern its potentially disastrous impacts on the prospects for development, especially for poorer populations in the global South. Earlier writings on climate change had tended to focus more on its links with biodiversity loss, spread of pathogens and diseases, land use planning, ecosystem change, and insurance markets, rather than its connections with development (Easterling and Apps 2005, Harvell et al. 2002, Tompkins and Adger 2004). But as the Social Development Department of the World Bank recently noted, “Climate change is the defining development challenge of our generation” (SDV, 2007: 2). These words echo the World Bank President Robert Zoellick’s statement at the United Nations Climate Change Conference in 2007 in Bali where he called climate change a “development, economic, and investment challenge.” Indeed, understanding the relationship between climate change, the human responses it necessitates, and how institutions shape such responses is an increasingly urgent need. This report directs attention towards a subset of such relationships, focusing on rural institutions and poor populations in the context of climate variability and change-induced adaptations.
Located in Resources / Climate Science Documents