Analyzing the Global Historical Climatology Network, outgoing longwave radiation, and NCEP–NCAR reanalysis data over the Amazon Basin, the authors find a clear interdecadal increasing trend over the past four decades in both rainfall and intensity of the hydrological cycle. These interdecadal variations are a result of the interdecadal change of the global divergent circulation. On the contrary, the impact of the Amazon deforestation as evaluated by all numerical studies has found a reduction of rainfall and evaporation, and an increase of temperature in the Amazon Basin extending its dry season. Evidently, the interdecadal trend of the basin’s hydrological cycle revealed from observations functions in a course opposite to the deforestation scenario. Results of this study suggest that future studies analyzing the impact of the basin-scale deforestation on the regional hydrological cycle and climate should be reassessed with multidecade numerical simulations including both schemes handling the land-surface processes and the mechanism generating proper interdecadal variation of the global divergent circulation.
Located in
Resources
/
Climate Science Documents