Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4408 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Strong increase in convective precipitation in response to higher temperatures
Precipitation changes can affect society more directly than variations in most other meteorological observables1–3, but precipitation is difficult to characterize because of fluctuations on nearly all temporal and spatial scales. In addition, the intensity of extreme precipitation rises markedly at higher temperature4–9, faster than the rate of increase in the atmosphere’s water-holding capacity1,4 , termed the Clausius– Clapeyron rate. Invigoration of convective precipitation (such as thunderstorms) has been favoured over a rise in stratiform precipitation (such as large-scale frontal precipitation) as a cause for this increase4,10, but the relative contributions of these two types of precipitation have been difficult to disentan- gle. Here we combine large data sets from radar measurements and rain gauges over Germany with corresponding synoptic ob- servations and temperature records, and separate convective and stratiform precipitation events by cloud observations. We find that for stratiform precipitation, extremes increase with temperature at approximately the Clausius–Clapeyron rate, without characteristic scales. In contrast, convective precipi- tation exhibits characteristic spatial and temporal scales, and its intensity in response to warming exceeds the Clausius– Clapeyron rate. We conclude that convective precipitation responds much more sensitively to temperature increases than stratiform precipitation, and increasingly dominates events of extreme precipitation.
Located in Resources / Climate Science Documents
File PDF document Stronger winds over a large lake in response to weakening air-to-lake temperature gradient
The impacts of climate change on the world’s large lakes are a cause for concern1–4. For example, over the past decades, mean surface water temperatures in Lake Superior, North America, have warmed faster than air temperature during the thermally stratified summer season, because decreasing ice cover has led to increased heat input2,5. However, the effects of this change on large lakes have not been studied extensively6. Here we analyse observations from buoys and satellites as well as model reanalyses for Lake Superior, and find that increasing temperatures in both air and surface water, and a reduction in the temperature gradient between air and water are destabilizing the atmospheric surface layer above the lake. As a result, surface wind speeds above the lake are increasing by nearly 5% per decade, exceeding trends in wind speed over land. A numerical model of the lake circulation suggests that the increasing wind speeds lead to increases in current speeds, and long-term warming causes the surface mixed layer to shoal and the season of stratification to lengthen. We conclude that climate change will profoundly affect the biogeochemical cycles of large lakes, the mesoscale atmospheric circulation at lake–land boundaries and the transport of airborne pollutants in regions that are rich in lakes.
Located in Resources / Climate Science Documents
File PDF document Stuart Eversole 2001.pdf
Located in Resources / TRB Library / STE-TAN
File PDF document Sublette Lake Texoma.pdf
Located in Resources / TRB Library / STE-TAN
Submit a Project
Submit a Project or Conservation Activity that you wish to share with the Tennessee River Basin community. To submit a project, you must first be a member of the Web Portal and then logged in to the site. To add a project or activity, first login, then click on Add New in the green toolbar at the top and then click on Project. Fill out all the appropriate fields and click Save. Your content will then be placed in a Pending Publication Folder to be reviewed and published. If you are not a member and still wish to share your project or activity contact Gillian Bee: gilliab@g.clemson.edu
Located in Projects
File PDF document Subtropical to boreal convergence of tree-leaf temperatures
The oxygen isotope ratio (d18O) of cellulose is thought to provide a record of ambient temperature and relative humidity during per- iods of carbon assimilation1,2. Here we introduce a method to resolve tree-canopy leaf temperature with the use of d18O of cellulose in 39 tree species. We show a remarkably constant leaf temperature of 21.4 6 2.2 6C across 506 of latitude, from subtropical to boreal biomes. This means that when carbon assimilation is maximal, the physiological and morphological properties of tree branches serve to raise leaf temperature above air temperature to a much greater extent in more northern latitudes. A main assumption underlying the use of d18O to reconstruct climate history is that the temperature and relative humidity of an actively photosynthesizing leaf are the same as those of the surrounding air3,4. Our data are contrary to that assumption and show that plant physiological ecology must be considered when reconstructing climate through isotope analysis. Furthermore, our results may explain why climate has only a modest effect on leaf economic traits5 in general.
Located in Resources / Climate Science Documents
File PDF document Successful range-expanding plants experience less above-ground and below-ground enemy impact
Many species are currently moving to higher latitudes and altitudes1–3. However, little is known about the factors that influence the future performance of range-expanding species in their new habitats. Here we show that range-expanding plant species from a riverine area were better defended against shoot and root enemies than were related native plant species growing in the same area. We grew fifteen plant species with and without non-coevolved polyphagous locusts and cosmopolitan, polyphagous aphids. Contrary to our expectations, the locusts performed more poorly on the range-expanding plant species than on the congeneric native plant species, whereas the aphids showed no difference. The shoot herbivores reduced the biomass of the native plants more than they did that of the congeneric range expanders. Also, the range-expanding plants developed fewer pathogenic effects4,5 in their root-zone soil than did the related native species. Current predictions forecast biodiversity loss due to limitations in the ability of species to adjust to climate warming conditions in their range 6–8. Our results strongly suggest that the plants that shift ranges towards higher latitudes and altitudes may include potential invaders, as the successful range expanders may experience less control by above-ground or below- ground enemies than the natives.
Located in Resources / Climate Science Documents
File PDF document Suloway Illinois Mussels.pdf
Located in Resources / TRB Library / STE-TAN
File PDF document Suloway Kankakee River.pdf
Located in Resources / TRB Library / STE-TAN
Video Supplemental planting for quail
Food plots can be helpful for bobwhites but only if they're done properly. Marion Barnes of Clemson Extension talks about what to plant, where to plant it and when to put it in the ground to get the most benefits.
Located in Training Resources / Webinars and Instructional Videos / Bobwhite Quail Seminar Series