Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4408 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Athearn Nova Scotia.pdf
Located in Resources / TRB Library / ANO-AYE
File PDF document Atkins 1979.pdf
Located in Resources / TRB Library / ANO-AYE
File PDF document Atlantic hurricanes and climate over the past 1,500 years
Atlantic tropical cyclone activity, as measured by annual storm counts, reached anomalous levels over the past decade1. The short nature of the historical record and potential issues with its reliability in earlier decades, however, has prompted an ongoing debate regarding the reality and significance of the recent rise2–5. Here we place recent activity in a longer-term context by comparing two independent estimates of tropical cyclone activity over the past 1,500 years. The first estimate is based on a composite of regional sedimentary evidence of landfalling hurricanes, while the second estimate uses a previously published statistical model of Atlantic tropical cyclone activity driven by proxy reconstructions of past climate changes. Both approaches yield consistent evidence of a peak in Atlantic tropical cyclone activity during medieval times (around AD 1000) followed by a subsequent lull in activity. The statistical model indicates that the medieval peak, which rivals or even exceeds (within uncertainties) recent levels of activity, results from the reinforcing effects of La-Nina-like climate conditions and relative tropical Atlantic warmth.
Located in Resources / Climate Science Documents
File PDF document Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally
It is possible that anthropogenic climate change will drive the Earth system into a qualitatively different state1. Although different types of uncertainty limit our capacity to assess this risk 2, Earth system scientists are particularly concerned about tipping elements, large-scale components of the Earth system that can be switched into qualitatively different states by small perturbations. Despite growing evidence that tipping elements exist in the climate system1,3, whether large-scale vegetation systems can tip into alternative states is poorly understood4. Here we show that tropical grassland, savanna and forest ecosystems, areas large enough to have powerful impacts on the Earth system, are likely to shift to alternative states. Specifically, we show that increasing atmospheric CO2 concentration will force transitions to vegetation states characterized by higher biomass and/or woody-plant dominance. The timing of these critical transitions varies as a result of between-site variance in the rate of temperature increase, as well as a dependence on stochastic variation in fire severity and rainfall. We further show that the locations of bistable vegetation zones (zones where alternative vegetation states can exist) will shift as climate changes. We conclude that even though large-scale directional regime shifts in terrestrial ecosystems are likely, asynchrony in the timing of these shifts may serve to dampen, but not nullify, the shock that these changes may represent to the Earth system.
Located in Resources / Climate Science Documents
File PDF document Atrazine.pdf
Located in Resources / TRB Library / ANO-AYE
Image Attack One Burn Crew Georgia 2018
Prescribed burns used to manage habitat for bobwhite, gopher tortoise.
Located in Resources / Images
File PDF document Attributing physical and biological impacts to anthropogenic climate change
Significant changes in physical and biological systems are occurring on all continents and in most oceans, with a concentration of available data in Europe and North America. Most of these changes are in the direction expected with warming temperature. Here we show that these changes in natural systems since at least 1970 are occurring in regions of observed temperature increases, and that these temperature increases at continental scales cannot be explained by natural climate variations alone. Given the conclusions from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report that most of the observed increase in global average temperatures since the mid-twentieth century is very likely to be due to the observed increase in anthropogenic greenhouse gas concentrations, and furthermore that it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica, we conclude that anthropogenic climate change is having a significant impact on physical and biological systems globally and in some continents.
Located in Resources / Climate Science Documents
File PDF document Auffenberg 1982.pdf
Located in Resources / TRB Library / ANO-AYE
File PDF document Augspurger 1996.pdf
Located in Resources / TRB Library / ANO-AYE
File PDF document Augspurger 2002.pdf
Located in Resources / TRB Library / ANO-AYE