-
This is a new reply
Located in
Test Message Board
/
Test Forum
/
Test Converstion 3
-
Rebuilding Soils on Mined Land for Native Forests in Appalachia
-
The eastern U.S. Appalachian region supports the world’s most extensive
temperate forests, but surface mining for coal has caused forest loss. New
reclamation methods are being employed with the intent of restoring native
forest on Appalachian mined lands. Mine soil construction is essential to
the reforestation process. Here, we review scientific literature concerning
selection of mining materials for mine soil construction where forest
ecosystem restoration is the reclamation goal. Successful establishment and
productive growth of native Appalachian trees has been documented on mine
soils with coarse fragment contents as great as 60% but with low soluble salt
levels and slightly to moderately acidic pHs, properties characteristic of the
region’s native soils. Native tree productivity on some Appalachian mined
lands where weathered rock spoils were used to reconstruct soils was found
comparable to productivity on native forest sites. Weathered rock spoils,
however, are lower in bioavailable N and P than native Appalachian soils and
they lack live seed banks which native soils contain. The body of scientific
research suggests use of salvaged native soils for mine soil construction when
forest ecosystem restoration is the reclamation goal, and that weathered rock
spoils are generally superior to unweathered rock spoils when constructing
mine soils for this purpose.
Located in
Resources
/
Climate Science Documents
-
Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands
-
Climate change has increased the area affected by forest fires each year in boreal North America1,2. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses3–5. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult to assess. Here, we examined the depth of ground-layer combustion in 178 sites dominated by black spruce in Alaska, using data collected from 31 fire events between 1983 and 2005. We show that the depth of burning increased as the fire season progressed when the annual area burned was small. However, deep burning occurred throughout the fire season when the annual area burned was large. Depth of burning increased late in the fire season in upland forests, but not in peatland and permafrost sites. Simulations of wildfire-induced carbon losses from Alaskan black spruce stands over the past 60 years suggest that ground-layer combustion has accelerated regional carbon losses over the past decade, owing to increases in burn area and late-season burning. As a result, soils in these black spruce stands have become a net source of carbon to the atmosphere, with carbon emissions far exceeding decadal uptake.
Located in
Resources
/
Climate Science Documents
-
Reconciling nature conservation and traditional farming practices: a spatially explicit framework to assess the extent of High Nature Value farmlands in the European countryside
-
Over past centuries, European landscapes have been shaped by human management. Traditional, low intensity agricultural practices, adapted to local climatic, geographic, and environmental conditions, led to a rich, diverse cultural and natural heritage, reflected in a wide range of rural landscapes, most of which were preserved until the advent of industrialized agriculture (Bignal & McCracken 2000; Paracchini et al. 2010; Oppermann et al. 2012). Agricultural landscapes currently account for half of Europe’s territory (Overmars et al. 2013), with ca. 50% of all species relying on agricultural habitats at least to some extent (Kristensen 2003; Moreira et al. 2005; Halada et al. 2011). Due to their acknowledged role in the maintenance of high levels of biodiversity, low-intensity farming systems have been highlighted as critical to nature conservation and protection of the rural environment (Beaufoy et al. 1994; Paracchini et al. 2010; Halada et al.2011; Egan & Mortensen 2012).
Located in
Resources
/
Climate Science Documents
-
Reconstruction of the history of anthropogenic CO2 concentrations in the ocean
-
The release of fossil fuel CO2 to the atmosphere by human activity has been implicated as the predominant cause of recent global climate change1. The ocean plays a crucial role in mitigating the effects of this perturbation to the climate system, sequestering 20 to 35 per cent of anthropogenic CO2 emissions2–4. Although much progress has been made in recent years in understanding and quantifying this sink, considerable uncertainties remain as to the distribution of anthropogenic CO2 in the ocean, its rate of uptake over the industrial era, and the relative roles of the ocean and terrestrial biosphere in anthropogenic CO2 sequestration. Here we address these questions by presenting an observationally based reconstruction of the spatially resolved, time-dependent history of anthropogenic carbon in the ocean over the industrial era. Our approach is based on the recognition that the transport of tracers in the ocean can be described by a Green’s function, which we estimate from tracer data using a maximum entropy deconvo- lution technique. Our results indicate that ocean uptake of anthro- pogenic CO2 has increased sharply since the 1950s, with a small decline in the rate of increase in the last few decades. We estimate the inventory and uptake rate of anthropogenic CO2 in 2008 at 140 6 25 Pg C and 2.3 6 0.6 Pg C yr21, respectively. We find that the Southern Ocean is the primary conduit by which this CO2 enters the ocean (contributing over 40 per cent of the anthro- pogenic CO2 inventory in the ocean in 2008). Our results also suggest that the terrestrial biosphere was a source of CO2 until the 1940s, subsequently turning into a sink. Taken over the entire industrial period, and accounting for uncertainties, we estimate that the terrestrial biosphere has been anywhere from neutral to a net source of CO2, contributing up to half as much CO2 as has been taken up by the ocean over the same period.
Located in
Resources
/
Climate Science Documents
-
Recovery of large carnivores in Europe’s modern human-dominated landscapes
-
The conservation of large carnivores is a formidable challenge for biodiversity conservation. Using a data set on the past and current status of brown bears (Ursus arctos), Eurasian lynx (Lynx lynx), gray wolves (Canis lupus), and wolverines (Gulo gulo) in European countries, we show that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records. The reasons for this overall conservation success include protective legislation, supportive public opinion, and a variety of practices making coexistence between large carnivores and people possible. The European situation reveals that large carnivores and people can share the same landscape.
Located in
Resources
/
Climate Science Documents
-
Reducing Greenhouse Gas Emissions from Deforestation and ForestDegradation: Global Land-Use Implications
-
Recent climate talks in Bali have made progress toward action on deforestation and forest degradation
in developing countries, within the anticipated post-Kyoto emissions reduction agreements. As a result
of such action, many forests will be better protected, but some land-use change will be displaced to
other locations. The demonstration phase launched at Bali offers an opportunity to examine potential
outcomes for biodiversity and ecosystem services. Research will be needed into selection of priority
areas for reducing emissions from deforestation and forest degradation to deliver multiple benefits,
on-the-ground methods to best ensure these benefits, and minimization of displaced land-use change
into nontarget countries and ecosystems, including through revised conservation investments
Located in
Resources
/
Climate Science Documents
-
Reduction in carbon uptake during turn of the century drought in western North America
-
Fossil fuel emissions aside, temperate North America is a net sink of carbon dioxide at present1–3. Year-to-year variations in this carbon sink are linked to variations in hydroclimate that affect net ecosystem productivity3,4. The severity and incidence of climatic extremes, including drought, have increased as a result of climate warming5–8. Here, we examine the effect of the turn of the century drought in western North America on carbon uptake in the region, using reanalysis data, remote sensing observations and data from global monitoring networks. We show that the area-integrated strength of the western North American carbon sink declined by 30–298Tg C yr−1 during the 2000–2004 drought. We further document a pronounced drying of the terrestrial biosphere during this period, together with a reduction in river discharge and a loss of cropland productivity. We compare our findings with previous palaeoclimate reconstructions7 and show that the last drought of this magnitude occurred more than 800 years ago. Based on projected changes in precipitation and drought severity, we estimate that the present mid-latitude carbon sink of 177–623 Tg C yr−1 in western North America could disappear by the end of the century.
Located in
Resources
/
Climate Science Documents
-
Reduction of spring warming over East Asia associated with vegetation feedback
-
Over East Asia, surface air temperature displays a significant increasing trend particularly in early months of the year for the period of 1982 – 2000. Warming per decade is strongest in late winter, 1.5°C in February and 1.1°C in March, but is significantly reduced in spring, 0.4°C in April and 0.1°C in May. During the analysis period, the reduced temperature increase from late winter to spring is found to be in contrast with the increased vegetation greenness derived from the satellite-measured leaf area index over the domain. We examined this inverse relationship using two climate model experiments— coupled with and without a dynamic vegetation model. In both experiments, strong warming in winter is relatively well reproduced, but weak warming in spring is observed only in the coupled experiment. Analysis of the surface energy budget indicates that weaker spring warming results from an evaporative cooling effect due to the increased vegetation greenness. Over East Asia, the vegetation-evaporation feedback, therefore, may produce seasonal asymmetry in the warming trend.
Located in
Resources
/
Climate Science Documents
-
Reeves, Bill
-
Located in
Expertise Search