-
Projects
-
This space contains information on projects to increase information sharing within the community of practice working on Wildland Fire and Prescribed Burning.
Located in
Resources
/
Research
-
Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year
-
Terrestrial ecosystems control carbon dioxide fluxes to and from
the atmosphere1,2 through photosynthesis and respiration, a balance
between net primary productivity and heterotrophic respiration,
that determines whether an ecosystem issequestering carbon
or releasing it to the atmosphere. Global1,3–5 and site-specific6 data
sets have demonstrated that climate and climate variability influence
biogeochemical processes that determine net ecosystem carbon
dioxide exchange (NEE) at multiple timescales. Experimental
data necessary to quantify impacts of a single climate variable,
such as temperature anomalies, on NEE and carbon sequestration
of ecosystems at interannual timescales have been lacking. This
derives from an inability of field studies to avoid the confounding
effects of natural intra-annual and interannual variability in temperature
and precipitation. Here we present results from a fouryear
study using replicate 12,000-kg intact tallgrass prairie monoliths
located in four 184-m3 enclosed lysimeters7
. We exposed 6 of
12 monoliths to an anomalously warm year in the second year of
the study8 and continuously quantified rates of ecosystem processes,
including NEE. We find that warming decreases NEE in
both the extreme year and the following year by inducing drought
that suppresses net primary productivity in the extreme year and
by stimulating heterotrophic respiration of soil biota in the subsequent
year. Our data indicate thattwo years are required for NEE
in the previously warmed experimental ecosystems to recover to
levels measured in the control ecosystems. Thistime lag caused net
ecosystem carbon sequestration in previously warmed ecosystems
to be decreased threefold over the study period, compared with
control ecosystems. Our findings suggest that more frequent
anomalously warm years9
, a possible consequence of increasing
anthropogenic carbon dioxide levels10, may lead to a sustained
decrease in carbon dioxide uptake by terrestrial ecosystems.
Vol 455| 18 September 2008
Located in
Resources
/
Climate Science Documents
-
prosperity_without_growth_report.pdf
-
Located in
Resources
/
Climate Science Documents
-
Protected Areas as Frontiers for Human Migration
-
Causes of human population growth near protected areas have been much debated. We conducted
821 interviews in 16 villages around Budongo Forest Reserve, Masindi district, Uganda, to explore the causes of
human migration to protected areas and to identify differences in forest use between migrant and nonmigrant
communities. We asked subjects for information about birthplace, migration, household assets, household
activities, and forest use. Interview subjects were categorized as nonmigrants (born in one of the interview
villages), socioeconomic migrants (chose to emigrate for economic or social reasons) from within Masindi
district (i.e., local migrants) and from outside the Masindi district (i.e., regional migrants), or forced migrants
(i.e., refugees or internally displaced individuals who emigrated as a result of conflict, human rights abuses,
or natural disaster). Only 198 respondents were born in interview villages, indicating high rates of migration
between 1998 and 2008. Migrants were drawn to Budongo Forest because they thought land was available
(268 individuals) or had family in the area (161 individuals). A greater number of regional migrants settled
in villages near Lake Albert than did forced and local migrants. Migration category was also associated with
differences in sources of livelihood. Of forced migrants 40.5% earned wages through labor, whereas 25.5% of
local and 14.5% of regional migrants engaged in wage labor. Migrant groups appeared to have different effects
on the environment. Of respondents that hunted, 72.7% were regional migrants. Principal component analyses
indicated households of regional migrants were more likely to be associated with deforestation. Our results
revealed gaps in current models of human population growth around protected areas. By highlighting the
importance of social networks and livelihood choices, our results contribute to a more nuanced understanding
of causes of migration and of the environmental effects of different migrant groups.
Conservation Biology, Volume 26, No. 3, 547–556
Located in
Resources
/
Climate Science Documents
-
Protected areas facilitate species’ range expansions
-
The benefits of protected areas (PAs) for biodiversity have been questioned in the context of climate change because PAs are static, whereas the distributions of species are dynamic. Current PAs may, however, continue to be important if they provide suitable locations for species to colonize at their leading-edge range boundaries, thereby enabling spread into new regions. Here, we present an empirical assessment of the role of PAs as targets for coloniza- tion during recent range expansions. Records from intensive sur- veys revealed that seven bird and butterfly species have colonized PAs 4.2 (median) times more frequently than expected from the availability of PAs in the landscapes colonized. Records of an additional 256 invertebrate species with less-intensive surveys supported these findings and showed that 98% of species are disproportionately associated with PAs in newly colonized parts of their ranges. Although colonizing species favor PAs in general, species vary greatly in their reliance on PAs, reflecting differences in the dependence of individual species on particular habitats and other conditions that are available only in PAs. These findings highlight the importance of current PAs for facilitating range expansions and show that a small subset of the landscape receives a high proportion of colonizations by range-expanding species.
conservation | climate change adaptation | nature reserves
Located in
Resources
/
Climate Science Documents
-
Protected areas in Borneo may fail to conserve tropical forest biodiversity under climate change
-
Protected areas (PAs) are key for conserving rainforest species, but many PAs are becoming increasingly
isolated within agricultural landscapes, which may have detrimental consequences for the forest biota
they contain. We examined the vulnerability of PA networks to climate change by examining connectivity
of PAs along elevation gradients. We used the PA network on Borneo as a model system, and examined
changes in the spatial distribution of climate conditions in future. A large proportion of PAs will not
contain analogous climates in future (based on temperature projections for 2061–2080), potentially
requiring organisms to move to cooler PAs at higher elevation, if they are to track climate changes. For
the highest warming scenario (RCP8.5), few (11–12.5%; 27–30/240) PAs were sufficiently topographically
diverse for analogous climate conditions (present-day equivalent or cooler) to remain in situ. For the
remaining 87.5–89% (210–213/240) of PAs, which were often situated at low elevation, analogous climate
will only be available in higher elevation PAs. However, over half (60–82%) of all PAs on Borneo are too
isolated for poor dispersers (<1 km per generation) to reach cooler PAs, because there is a lack of connecting
forest habitat. Even under the lowest warming scenario (RCP2.6), analogous climate conditions will
disappear from 61% (146/240) of PAs, and a large proportion of these are too isolated for poor dispersers
to reach cooler PAs. Our results suggest that low elevation PAs are particularly vulnerable to climate
change, and management to improve linkage of PAs along elevation gradients should be a conservation
priority
Located in
Resources
/
Climate Science Documents
-
Protecting the Tennessee River Gorge
-
A video documenting why the Tennessee River Gorge Trust's work is necessary.
Located in
Training
/
Videos and Webinars
-
Protecting Wildlife Migration Corridors and Crucial Wildlife Habitat in the West
-
BACKGROUND
1. Large intact and functioning ecosystems, healthy fish and wildlife populations, and abundant public access to natural landscapes are a significant contributing factor to the West's economic and in-migration boom as well as quality of life. Critical wildlife migration corridors and crucial wildlife habitats are necessary to maintain flourishing wildlife populations. .
2. The Western States are particularly and uniquely affected by activity occurring in wildlife migration corridors and crucial wildlife habitats. Western States must also contend with an inter-connected mixture of private, state and federal lands. Migration corridors cross all political boundaries and States need to protect migration corridors on federal land through various state planning documents.
3. Natural resource development, urban development, and maintenance of the existing infrastructures of the West impact wildlife species, their habitats and migration corridors. Western States are increasingly expending limited state funds to participate in federal public land resource management planning as a result of the growing national focus on energy production and independence. States continue to expend scarce funds to protect or mitigate impacts to wildlife resources by energy development.
4. States possess broad trustee, police powers and primacy over fish and wildlife within their borders. With the exception of marine mammals, states retain concurrent jurisdiction even where Congress has directed specific federal authority of fish and wildlife speci
Located in
Resources
/
Climate Science Documents
-
Pruiskma et al 1981.pdf
-
Located in
Resources
/
TRB Library
/
PEK-RIC
-
Public land, timber harvests, and climate mitigation: Quantifying carbon sequestration potential on U.S. public timberlands
-
Scientists and policy makers have long recognized the role that forests can play in countering the atmospheric buildup of carbon dioxide (CO2), a greenhouse gas (GHG). In the United States, terrestrial carbon sequestration in private and public forests offsets approximately 11% of all GHG emissions from all sectors of the economy on an annual basis. Although much of the attention on forest carbon sequestration strategy in the United States has been on the role of private lands, public forests in the United States represent approximately 20% of the U.S. timberland area and also hold a significantly large share (30%) of the U.S. timber volume. With such a large standing timber inventory, these forested lands have considerable impact on the U.S. forest carbon balance. To help decision makers understand the carbon implications of potential changes in public timberland management, we compared a baseline timber harvest scenario with two alternative harvest scenarios and estimated annual carbon stock changes associated with each. Our analysis found that a ‘‘no timber harvest’’ scenario eliminating harvests on public lands would result in an annual increase of 17–29 million metric tonnes of carbon (MMTC) per year between 2010 and 2050—as much as a 43% increase over current sequestration levels on public timberlands and would offset up to 1.5% of total U.S. GHG emissions. In contrast, moving to a more intense harvesting policy similar to that which prevailed in the 1980s may result in annual carbon losses of 27–35 MMTC per year between 2010 and 2050. These losses would represent a significant decline (50–80%) in anticipated carbon sequestration associated with the existing timber harvest policies. If carbon sequestration were valued in the marketplace as part of a GHG offset program, the economic value of sequestered carbon on public lands could be substantial relative to timber harvest revenues.
Located in
Resources
/
Climate Science Documents