Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4408 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
Planning Training Events
Located in Training
Planning Training Events
If you are planning a training event, the following resources may be helpful to ensure your event is successful.
Located in Training
File PDF document Plant Species Richness and Ecosystem Multifunctionality in Global Drylands
Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.
Located in Resources / Climate Science Documents
File PDF document Plant species richness: the world records
Questions: The co-existence of high numbers of species has always fascinated ecologists, but what and where are the communities with the world records for plant species richness? The species–area relationship is among the best-known patterns in community ecology, but does it give a consistent global pattern for the most saturated communities, the global maxima? Location: The world. Methods: We assembled the maximum values recorded for vascular plant species richness for contiguous areas from 1 mm2 up to 1 ha. We applied the power function to relate maximal richness to area and to make extrapolations to the whole Earth. Results: Only two community types contain global plant species maxima. The maxima at smaller spatial grain were from oligotrophic to mesotrophic, managed, semi-natural, temperate grasslands (e.g. 89 species on 1 m2), those at larger grains were from tropical rain forests (e.g. 942 species on 1 ha). The maximum richness values closely followed a power function with z = 0.250: close to Pres- ton’s ‘canonical’ value of 0.262. There was no discernable difference between maxima using rooted presence (i.e. including only plants rooted in the plot) vs shoot presence (i.e. including any plant with physical cover over the plot). How- ever, shoot presence values must logically be greater, with the curves flattening out at very small grain, and there is evidence of this from point quadrats. Extrap- olating the curve to the terrestrial surface of the Earth gave a prediction of 219 204 vascular plant species, surprisingly close to a recent estimate of 275 000 actual species. Conclusions: Very high richness at any spatial grain is found only in two particular habitat/community types. Nevertheless, these high richness values form a very strong, consistent pattern, not greatly affected by the method of sampling, and this pattern extrapolates amazingly well. The records challenge ecologists to consider mechanisms of species co-existence, answers to the ‘Paradox of the Plankton’. Biodiversity; Canonical hypothesis; Macroecology; Oligo- to mesotrophic grassland; Paradox of the Plankton; Power function; Rooted presence; Scale dependence; Shoot presence; Spatial grain; Spatial scale; Species–area relation; Tropical rain forest;
Located in Resources / Climate Science Documents
File PDF document Plant-Pollinator Interactions over 120 Years: Loss of Species, Co-Occurrence, and Function
Using historic data sets, we quantified the degree to which global change over 120 years disrupted plant-pollinator interactions in a temperate forest understory community in Illinois, USA. We found degradation of interaction network structure and function and extirpation of 50% of bee species. Network changes can be attributed to shifts in forb and bee phenologies resulting in temporal mismatches, nonrandom species extinctions, and loss of spatial co-occurrences between extant species in modified landscapes. Quantity and quality of pollination services have declined through time. The historic network showed flexibility in response to disturbance; however, our data suggest that networks will be less resilient to future changes.
Located in Resources / Climate Science Documents
Video ECMAScript program Planting Native Grasses: Missouri Forage and Livestock Series
Pat Keyser (University of Tennessee) and Rick Rath (Missouri Department of Conservation) share about establishing and managing native grasses on pasture lands. Native grasses benefit not only livestock, but wildlife too. This webinar can help practitioners and landowners alike. Filmed January 20, 2021 - Missouri Forage and Livestock Series
Located in Training Resources / Webinars and Instructional Videos
File PDF document Pleistocene Megafaunal Collapse, Novel Plant Communities, and Enhanced Fire Regimes in North America
Although the North American megafaunal extinctions and the formation of novel plant communities are well-known features of the last deglaciation, the causal relationships between these phenomena are unclear. Using the dung fungus Sporormiella and other paleoecological proxies from Appleman Lake, Indiana, and several New York sites, we established that the megafaunal decline closely preceded enhanced fire regimes and the development of plant communities that have no modern analogs. The loss of keystone megaherbivores may thus have altered ecosystem structure and function by the release of palatable hardwoods from herbivory pressure and by fuel accumulation. Megafaunal populations collapsed from 14,800 to 13,700 years ago, well before the final extinctions and during the BøllingAllerød warm period. Human impacts remain plausible, but the decline predates Younger Dryas cooling and the extraterrestrial impact event proposed to have occurred 12,900 years ago.
Located in Resources / Climate Science Documents
File PDF document PLoSONE-Farming.pdf
Located in Resources / Climate Science Documents
Image PNG image Plus Button
Located in Help / Help Images
File PDF document PNAS-2015-Crowder-1423674112.pdf
Located in Resources / Climate Science Documents