Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4408 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Makela et al 1991.pdf
Located in Resources / TRB Library / LEW-MAR
File PDF document Makela Oikari 1990.pdf
Located in Resources / TRB Library / LEW-MAR
File PDF document Malouf et al 1972.pdf
Located in Resources / TRB Library / LEW-MAR
Image JPEG image Manage Portlets
Located in Help / Help Images
File PDF document Management practices increase the impact of roads on plant communities in forests
The question of the interaction between management practices and road effects on forest biodiversity is of critical interest for sustainable practices and the conservation of forest communities. Forest road improvement and easier access to stand interiors via skid trails, are integral components of management. We tested whether skid trails and the use of limestone gravel for road improvement extended the road effect on plant communities further into forest habitats in a nutrient-poor environment. We analyzed how road distance and skid trail presence affect stand plant communities by examining species compo- sition, distribution of biological and ecological traits, individual species responses and environmental plant indicator values. All results showed that the road effect extended deeper into forest on skid trails, i.e. up to 20 m and even 60 m, than off skid trails, i.e. up to 10 m. Skid trails served as penetration con- duits for open-habitat species probably due to forest machinery traffic. The road effect was more damag- ing to forest species and less-competitive species on skid trails. Additionally, limestone gravel modified the acidity of adjacent poor soils, leading to a shift in species composition and to a colonization of the stand interior by basophilous species. We advocate minimizing skid trail density and using endogenous materials for roads to keep sections of forest large enough to conserve disturbance-sensitive forest species. The interaction found between road effects and management practices underlines the need to adopt a landscape-scale view and to consider multiple anthropogenic impacts in order to effectively preserve forest plant communities.
Located in Resources / Climate Science Documents
Video Managing agricultural land for quail
Cropland used to be synonymous with bobwhite whistles in South Carolina. As Ted Rainwater, Quail Forever Farm Bill Biologist, explains, there a many things a landowner can do to modern agriculture to make it more quail-friendly.
Located in Training Resources / Webinars and Instructional Videos / Bobwhite Quail Seminar Series
File PDF document Managing Forests and Fire in Changing Climates
With projected climate change, we expect to face much more forest fi re in the coming decades. Policymakers are challenged not to categorize all fires as destructive to ecosystems simply because they have long fl ame lengths and kill most of the trees within the fi re boundary. Ecological context matters: In some ecosystems, high-severity regimes are appropriate, but climate change may modify these fi re regimes and ecosystems as well. Some undesirable impacts may be avoided or reduced through global strategies, as well as distinct strategies based on a forest’s historical fi re regime. SCIENCE VOL 342 4 OCTOBER 2013
Located in Resources / Climate Science Documents
The southeastern United States has millions of acres of oak dominated forests that have a closed canopy with limited herbaceous and shrub understory that northern bobwhite require. However, research has demonstrated that with adequate overstory thinning, and the use of frequent prescribed fire, these forests can support populations of Northern Bobwhite Quail, presenting perhaps the best opportunity for large-scale quail restoration in the region. Participants in the webinar will learn about managing oak forests and restoration efforts related to northern bobwhite quail.
Located in Training Resources / Webinars and Instructional Videos / NBCI Bobwhite Seminars
File PDF document Managing the whole landscape: historical, hybrid, and novel ecosystems
The reality confronting ecosystem managers today is one of heterogeneous, rapidly transforming landscapes, particularly in the areas more affected by urban and agricultural development. A landscape management framework that incorporates all systems, across the spectrum of degrees of alteration, provides a fuller set of options for how and when to intervene, uses limited resources more effectively, and increases the chances of achieving management goals. That many ecosystems have departed so substantially from their historical trajectory that they defy conventional restoration is not in dispute. Acknowledging novel ecosystems need not constitute a threat to existing policy and management approaches. Rather, the development of an integrated approach to management interventions can provide options that are in tune with the current reality of rapid ecosystem change.
Located in Resources / Climate Science Documents
File PDF document Managing Wildfire Risk in Fire-Prone Landscapes: How Are Private Landowners Contributing?
The fire-prone landscapes include both public and private lands. Wildfire burns indiscriminately across property boundaries, which means that the way potential fuels are managed on one piece of property can affect wildfire risk on neighboring lands. KeY FINdINGS • Private forest landowners who perceive great fire risk or are concerned about hazardous fuel conditions on nearby public lands are more likely to reduce fuels on their properties and cooperate with public agencies on fuel reduction. • Most private landowners surveyed reduce fuel independently, rather than in cooperation with others, primarily because of distrust and social norms about private property ownership. • Forest owners who live on a forested parcel of land are much more likely to reduce fuels on that parcel than are owners who maintain residences elsewhere. • Limited opportunity to offset the costs of fuel reduction (e.g., with public incentive programs or income from markets for logs and wood products) poses greater constraints to fuel reduction by private forest owners than does lack of knowledge or skills.
Located in Resources / Climate Science Documents