-
Impact of terrestrial biosphere carbon exchanges on the anomalous CO2 increase in 2002–2003
-
Concluding paragraphs:
In general, we find that the remarkable feature of the 2002– 2003 anomaly seems to be that climate fluctuations, not only related to El Nin ̃o and occurring across all latitudes, acted together to create an unusually strong outgasing of CO2 of the terrestrial biosphere. Further research will be required to investigate if this fluctuation carries features of projected future climate change and the CO2 growth rate anomaly has been a first indicator of a developing positive feedback between climate warming and the global carbon cycle.
Located in
Resources
/
Climate Science Documents
-
Impacts
-
-
Impacts in the third dimension
-
Despite reports of no trends in snow- and rainfall, rivers in the northwest USA have run lower and lower in recent decades. A closer look at high- and low-altitude precipitation suggests that observational networks have missed a decline in mountain rain and snow that can explain the discrepancy.
Located in
Resources
/
Climate Science Documents
-
Impacts of Biodiversity Loss
-
How much diversity is needed to maintain
the productivity of ecosystems?
VOL 336 SCIENCE
Located in
Resources
/
Climate Science Documents
-
Impacts of biofuel cultivation on mortality and crop yields
-
Ground-level ozone is a priority air pollutant, causing ∼22,000 excess deaths per year in Europe1, significant reductions in crop yields2 and loss of biodiversity3. It is produced in the troposphere through photochemical reactions involving oxides of nitrogen (NOx) and volatile organic compounds (VOCs). The biosphere is the main source of VOCs, with an estimated 1,150 TgC yr−1 (∼90% of total VOC emissions) released from vegetation globally4 . Isoprene (2-methyl-1,3-butadiene) is the most significant biogenic VOC in terms of mass (around 500 TgC yr−1 ) and chemical reactivity4 and plays an important role in the mediation of ground-level ozone concentrations5. Concerns about climate change and energy security are driving an aggressive expansion of bioenergy crop production and many of these plant species emit more isoprene than the traditional crops they are replacing. Here we quantify the increases in isoprene emission rates caused by cultivation of 72 Mha of biofuel crops in Europe. We then estimate the resultant changes in ground-level ozone concentrations and the impacts on human mortality and crop yields that these could cause. Our study highlights the need to consider more than simple carbon budgets when considering the cultivation of biofuel feedstock crops for greenhouse-gas mitigation.
Located in
Resources
/
Climate Science Documents
-
Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States
-
We investigate the impact of climate change on wildfire activity and carbonaceous aerosol concentrations in the western United States. We regress observed area burned onto observed meteorological fields and fire indices from the Canadian Fire Weather Index system and find that May–October mean temperature and fuel moisture explain 24–57% of the variance in annual area burned in this region. Applying meteorological fields calculated by a general circulation model (GCM) to our regression model, we show that increases in temperature cause annual mean area burned in the western United States to increase by 54% by the 2050s relative to the present day. Changes in area burned are ecosystem dependent, with the forests of the Pacific Northwest and Rocky Mountains experiencing the greatest increases of 78 and 175%, respectively. Increased area burned results in near doubling of wildfire carbonaceous aerosol emissions by midcentury. Using a chemical transport model driven by meteorology from the same GCM, we calculate that climate change will increase summertime organic carbon (OC) aerosol concentrations over the western United States by 40% and elemental carbon (EC) concentrations by 20% from 2000 to 2050. Most of this increase (75% for OC and 95% for EC) is caused by larger wildfire emissions with the rest caused by changes in meteorology and for OC by increased monoterpene emissions in a warmer climate. Such an increase in carbonaceous aerosol would have important consequences for western U.S. air quality and visibility.
Located in
Resources
/
Climate Science Documents
-
Impacts of climate change on August stream discharge in the Central-Rocky Mountains
-
In the snowmelt dominated hydrology of arid western US landscapes, late summer low streamflow is the most vulnerable period for aquatic ecosystem habitats and trout populations. This study analyzes mean August discharge at 153 streams throughout the Central Rocky Mountains of North America (CRMs) for changes in discharge from 1950–2008. The purpose of this study was to determine if: (1) Mean August stream discharge values have decreased over the last half-century; (2) Low discharge values are occurring more frequently; (3) Climatic variables are influencing August discharge trends. Here we use a strict selection process to characterize gauging stations based on amount of anthropogenic impact in order to identify heavily impacted rivers and understand the relationship between climatic variables and discharge trends. Using historic United States Geologic Survey discharge data, we analyzed data for trends of 40–59 years. Combining of these records along with aerial photos and water rights records we selected gauging stations based on the length and continuity of discharge records and categorized each based on the amount of diversion. Variables that could potentially influence discharge such as change in vegetation and Pacific Decadal Oscillation (PDO) were examined, but we found that that both did not significantly influence August discharge patterns. Our analyses indicate that non-regulated watersheds are experiencing substantial declines in stream discharge and we have found that 89% of all non-regulated stations exhibit a declining slope. Additionally our results here indicate a significant (α≤0.10) decline in discharge from 1951–2008 for the CRMs. Correlations results at our pristine sites show a negative relationship between air temperatures and discharge and these results coupled with increasing air temperature trends pose serious concern for aquatic ecosystems in CRMs.
Located in
Resources
/
Climate Science Documents
-
Impacts of Climate Change on Biodiversity, Ecosystems, and Ecosystem Services Technical Input to the 2013 National Climate Assessment
-
KEY FINDINGS
Biodiversity and ecosystems are already more stressed than at any comparable period of human history. Climate change almost always exacerbates the problems caused by other environmental stressors including: land use change and the consequent habitat fragmentation and degradation; extraction of timber, fish, water, and other resources; biological disturbance such as the introduction of non-native invasive species, disease, and pests; and chemical, heavy metal, and nutrient pollution. As a corollary, one mechanism for reducing the negative impacts of climate change is a reduction in other stressors.
Climate change is causing many species to shift their geographical ranges, distributions, and phenologies at faster rates than previously thought. Changes in terrestrial plant and animal species ranges are shifting the location and extent of biomes, and altering ecosystem structure and functioning. These rates vary considerably among species. Terrestrial species are moving up in elevation at rates 2 to 3 times greater than initial estimates. Despite faster rates of warming in terrestrial systems compared to ocean environments, the velocity of range shifts for marine taxa exceeds those reported for terrestrial species. Species and populations that are unable to shift their geographic distributions or have narrow environmental tolerances are at an increased risk of extinction.
There is increasing evidence of population declines and localized extinctions that can be directly attributed to climate change. Ecological specialists and species that live at high altitudes and latitudes are particularly vulnerable to climate change. Overall, the impacts of climate change are projected to result in a net loss of global biodiversity and major shifts in the provision of ecosystem services. For example, the range and abundance of economically important marine fish are already changing due to climate change and are projected to continue changing such that some local fisheries are very likely to cease to be viable, whereas others may become more valuable if the fishing community can adapt.
Range shifts will result in new community assemblages, new associations among species, and promote interactions among species that have not existed in the past. Changes in the spatial distribution and seasonal timing of flora and fauna within marine, aquatic, and terrestrial environments can result in trophic mismatches and asynchronies. Novel species assemblages can also substantially alter ecosystem structure and function and the distribution of ecosystem services.
Changes in precipitation regimes and extreme events can cause ecosystem transitions, increase transport of nutrients and pollutants to downstream ecosystems, and overwhelm the ability of natural systems to mitigate harm to people from these events. Changes in extreme events affect systems differentially, because different thresholds are crossed. For example, more intense storms and increased drought coupled with warming can shift grasslands into shrublands, or facilitate domination by other grass types (for example, mixed grass to C-4 tallgrass). More heavy rainfall also increases movement of nutrients and pollutants to downstream ecosystems, restructuring processes, biota, and habitats. As a consequence, regulation of drinking water quality is very likely to be strained as high rainfall and river discharge lead to higher levels of nitrogen in rivers and greater risk of waterborne disease outbreaks.
S-2
Impacts of Climate Change on Biodiversity, Ecosystems, and Ecosystem Services | Executive Summary Technical Input to the 2013 National Climate Assessment
Changes in winter have big and surprising effects on ecosystems and their services. Changes in soil freezing, snow cover, and air temperature have affected carbon sequestration, decomposition, and carbon export, which influence agricultural and forest production. Seasonally snow-covered regions are especially susceptible to climate change as small changes in temperature or precipitation may result in large changes in ecosystem structure and function. Longer growing seasons and warmer winters are enhancing pest outbreaks, leading to tree mortality and more intense and extensive fires. For winter sports and recreation, future economic losses are projected to be high because of decreased or unreliable snowfall.
The ecosystem services provided by coastal habitats are especially vulnerable to sea-level rise and more severe storms. The Atlantic and Gulf of Mexico coasts are most vulnerable to the loss of coastal protection services provided by wetlands and coral reefs. Along the Pacific coast long-term erosion of dunes due to increasing wave heights is projected to be an increasing problem for coastal communities. Beach recreation is also projected to suffer due to coastal erosion. Other forms of recreation are very likely to improve due to better weather, and the net effect is likely a redistribution of the industry and its economic impact, with visitors and tourism dollars shifting away from some communities in favor of others.
Climate adaptation has experienced a dramatic increase in attention since the last National Climate Assessment and become a major emphasis in biodiversity conservation and natural resource policy and management. Federal and State agencies are planning for and integrating climate change research into resource management and actions to address impacts of climate change based on historical impacts, future vulnerabilities, and observations on the ground. Land managers have realized that static protected areas will not be sufficient to conserve biodiversity in a changing climate, requiring an emphasis on landscape-scale conservation, connectivity among protected habitats, and sustaining ecological functioning of working lands and waters. Agile and adaptive management approaches are increasingly under development, including monitoring, experimentation, and a capacity to evaluate and modify management actions. Risk-based framing and stakeholder-driven scenario planning will be essential in enhancing our ability to respond to the impacts of climate change.
Climate change responses employed by other sectors (for example, energy, agriculture, transportation) are creating new ecosystem stresses, but also can incorporate ecosystem- based approaches to improve their efficacy. Ecosystem-based adaptation has emerged as a framework for understanding the role of ecosystem services in moderating climate impacts on people, although this concept is currently being used more on an international scale than within the United States.
Ecological monitoring efforts need to be improved and better coordinated among Federal and State agencies to ensure that the impacts of climate change are adequately observed as well as to support ecological research, management, assessment, and policy. As species and ecosystem boundaries shift to keep pace with climate change, improved and better-integrated research, monitoring, and assessment efforts will be needed at national and global scales. Existing monitoring networks in the United States are not well suited for detecting and attributing the impacts of climate change to the wide range of affected species at the appropriate spatio-temporal scales.
Located in
Resources
/
Climate Science Documents
-
Impacts of climate change on the world’s most exceptional ecoregions
-
The current rate of warming due to increases in greenhouse gas (GHG) emissions is very likely unprecedented over the last 10,000 y. Although the majority of countries have adopted the view that global warming must be limited to <2 °C, current GHG emission rates and nonagreement at Copenhagen in December 2009 increase the likelihood of this limit being exceeded by 2100. Extensive evi- dence has linked major changes in biological systems to 20th century warming. The “Global 200” comprises 238 ecoregions of exceptional biodiversity [Olson DM, Dinerstein E (2002) Ann Mo Bot Gard 89:199–224]. We assess the likelihood that, by 2070, these iconic ecoregions will regularly experience monthly climatic conditions that were extreme in 1961–1990. Using >600 realizations from climate model ensembles, we show that up to 86% of terres- trial and 83% of freshwater ecoregions will be exposed to average monthly temperature patterns >2 SDs (2σ) of the 1961–1990 base- line, including 82% of critically endangered ecoregions. The entire range of 89 ecoregions will experience extreme monthly temper- atures with a local warming of <2 °C. Tropical and subtropical ecor- egions, and mangroves, face extreme conditions earliest, some with <1 °C warming. In contrast, few ecoregions within Boreal Forests and Tundra biomes will experience such extremes this cen- tury. On average, precipitation regimes do not exceed 2σ of the baseline period, although considerable variability exists across the climate realizations. Further, the strength of the correlation between seasonal temperature and precipitation changes over nu- merous ecoregions. These results suggest many Global 200 ecore- gions may be under substantial climatic stress by 2100.
climate impacts | climate model ensemble | conservation extreme
Located in
Resources
/
Climate Science Documents
-
Impacts of climate change on the future of biodiversity
-
Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this review, we first examine the different possible effects of climate change that can operate at individual, population, species, community, ecosystem and biome scales, notably showing that species can respond to climate change challenges by shifting their climatic niche along three non-exclusive axes: time (e.g. phenology), space (e.g. range) and self (e.g. physiology). Then, we present the principal specificities and caveats of the most common approaches used to estimate future biodiversity at global and sub- continental scales and we synthesise their results. Finally, we highlight several challenges for future research both in theoretical and applied realms. Overall, our review shows that current estimates are very variable, depending on the method, taxonomic group, biodiversity loss metrics, spatial scales and time periods considered. Yet, the majority of models indicate alarming consequences for biodiversity, with the worst- case scenarios leading to extinction rates that would qualify as the sixth mass extinction in the history of the earth.
Keywords
Biodiversity, climate change, species extinctions.
Located in
Resources
/
Climate Science Documents