Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4408 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
How to Search the Expertise Directory Profile Search
Located in Help / Technical User Support / How to Use the Expertise Database
How to Use Dates for Collection Criteria and Sorting
Explanation of the Dates associated with Collections and their uses
Located in Resources / / How To Add Content to the Portal / Adding Collections
How to Use Dates for Collection Criteria and Sorting
Explanation of the Dates associated with Collections and their uses
Located in Help / / Getting Started: How To Add Content to the Portal / Adding Collections
How to Use Google Docs Integration
This document explains how to use the Google Docs integration inside of the Landscape Partnership website.
Located in Help / General User Support
How to Use Google Docs Integration
This document explains how to use the Google Docs integration inside of the Landscape Partnership website.
Located in Help / General User Support
How to Use the Landscape Partnership Portal Videos
Located in Training / Videos and Webinars
How to work with communities
Located in Resources
File PDF document How wide is a stream? Spatial extent of the potential ‘‘stream signature’’ in terrestrial food webs using meta-analysis
The magnitude of cross-ecosystem resource subsidies is increasingly well recognized; however, less is known about the distance these subsidies travel into the recipient landscape. In streams and rivers, this distance can delimit the ‘‘biological stream width,’’ complementary to hydro-geomorphic measures (e.g., channel banks) that have typically defined stream ecosystem boundaries. In this study we used meta-analysis to define a ‘‘stream signature’’ on land that relates the stream-to-land subsidy to distance. The 50% stream signature, for example, identifies the point on the landscape where subsidy resources are still at half of their maximum (in- or near-stream) level. The decay curve for these data was best fit by a negative power function in which the 50% stream signature was concentrated near stream banks (1.5 m), but a non-trivial (10%) portion of the maximum subsidy level was still found .0.5 km from the water’s edge. The meta-analysis also identified explanatory variables that affect the stream signature. This improves our understanding of ecosystem conditions that permit spatially extensive subsidy transmission, such as in highly productive, middle-order streams and rivers. Resultant multivariate models from this analysis may be useful to managers implementing buffer rules and conservation strategies for stream and riparian function, as they facilitate prediction of the extent of subsidies. Our results stress that much of the subsidy remains near the stream, but also that subsidies (and aquatic organisms) are capable of long-distance dispersal into adjacent environments, and that the effective ‘‘biological stream width’’ of stream and river ecosystems is often much larger than has been defined by hydro-geomorphic metrics alone. Limited data available from marine and lake sources overlap well with the stream signature data, indicating that the ‘‘signature’’ approach may also be applicable to subsidy spatial dynamics across other ecosystems. Key words: aquatic subsidies; dispersal; distance; food webs; insects; meta-analysis; stream.
Located in Resources / Climate Science Documents
File PDF document Howard 1912.pdf
Located in Resources / TRB Library / HOL-HUE
File PDF document Howard 1914.pdf
Located in Resources / TRB Library / HOL-HUE