Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4408 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Carbon debt and carbon sequestration parity in forest bioenergy production
The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and serve as a substitute for fossil fuels, though such a practice could reduce terrestrial C storage and thereby increase atmospheric CO2 concentrations in the near-term. Here, we used an ecosystem simulation model to ascertain the effectiveness of using forest bioenergy as a substitute for fossil fuels, drawing from a broad range of land-use histories, harvesting regimes, ecosystem characteristics, and bioenergy conversion effi- ciencies. Results demonstrate that the times required for bioenergy substitutions to repay the C Debt incurred from biomass harvest are usually much shorter (< 100 years) than the time required for bioenergy production to substitute the amount of C that would be stored if the forest were left unharvested entirely, a point we refer to as C Sequestration Parity. The effectiveness of substituting woody bioenergy for fossil fuels is highly dependent on the factors that determine bioenergy conversion efficiency, such as the C emissions released during the har- vest, transport, and firing of woody biomass. Consideration of the frequency and intensity of biomass harvests should also be given; performing total harvests (clear-cutting) at high-frequency may produce more bioenergy than less intensive harvesting regimes but may decrease C storage and thereby prolong the time required to achieve C Sequestration Parity. Keywords: bioenergy, biofuel, C cycle, C sequestration, forest management
Located in Resources / Climate Science Documents
File PDF document Regional carbon dioxide implications of forest bioenergy production
Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests1, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions2, and forest thinning to reduce wildfire emissions3. Here, we use forest inventory data to show that fire prevention measures and large-scale bioenergy harvest in US West Coast forests lead to 2–14% (46–405 Tg C) higher emissions compared with current management practices over the next 20 years. We studied 80 forest types in 19 ecoregions, and found that the current carbon sink in 16 of these ecoregions is sufficiently strong that it cannot be matched or exceeded through substitution of fossil fuels by forest bioenergy. If the sink in these ecoregions weakens below its current level by 30–60 g C m−2 yr−1 owing to insect infestations, increased fire emissions or reduced primary production, management schemes including bioenergy production may succeed in jointly reducing fire risk and carbon emissions. In the remaining three ecoregions, immediate implementation of fire prevention and biofuel policies may yield net emission savings. Hence, forest policy should consider current forest carbon balance, local forest conditions and ecosystem sustainability in establishing how to decrease emissions.
Located in Resources / Climate Science Documents
File PDF document From plant to power
Petrol might yet survive the green revolution. Some investors are taking seriously the con- cept of ‘green gasoline’ — transforming the woody remains of plants into exact replicas of today’s transportation fuels. Many see promise because, unlike other biofuels, this product would blend smoothly into today’s petrol-driven infrastructure. “This is one I like. It’s got a chance of making it,” says Lanny Schmidt, a chemical engineer who works on combustion processes and alternative fuels at the University of Minnesota in Minneapolis. Yet this ‘biomass-to-liquid’ approach is one of the least known in the biofuels portfolio, and barely makes a dent in alternative fuel quotas.
Located in Resources / Climate Science Documents
File PDF document Do alternative energy sources displace fossil fuels?
A fundamental, generally implicit, assumption of the Intergov- ernmental Panel on Climate Change reports and many energy analysts is that each unit of energy supplied by non-fossil-fuel sources takes the place of a unit of energy supplied by fossil- fuel sources (1–4). However, owing to the complexity of economic systems and human behaviour, it is often the case that changes aimed at reducing one type of resource consumption, either through improvements in efficiency of use or by developing substitutes, do not lead to the intended outcome when net effects are considered (5–9). Here, I show that the average pattern across most nations of the world over the past fifty years is one where each unit of total national energy use from non- fossil-fuel sources displaced less than one-quarter of a unit of fossil-fuel energy use and, focusing specifically on electricity, each unit of electricity generated by non-fossil-fuel sources displaced less than one-tenth of a unit of fossil-fuel-generated electricity. These results challenge conventional thinking in that they indicate that suppressing the use of fossil fuel will require changes other than simply technical ones such as expanding non-fossil-fuel energy production.
Located in Resources / Climate Science Documents
File PDF document The Biofuels Landscape Through the Lens of Industrial Chemistry
Replacing petroleum feedstock with biomass in the production of fuels and value-added chemicals carries considerable appeal. As in industrial chemistry more broadly, high-throughput experimentation has greatly facilitated innovation in small-scale exploration of biomass production and processing. Yet biomass is hard to transport, potentially hindering the integration of manufacturing-scale processes. Moreover, the path from laboratory breakthrough to commercial production remains as tortuous as ever.
Located in Resources / Climate Science Documents
File PDF document Beneficial Biofuels—The Food, Energy, and Environment Trilemma
Exploiting multiple feedstocks, under new policies and accounting rules, to balance biofuel production, food security, and greenhouse-gas reduction.
Located in Resources / Climate Science Documents
File PDF document Implications of Limiting CO2 Concentrations for Land Use and Energy
Limiting atmospheric carbon dioxide (CO2) concentrations to low levels requires strategies to manage anthropogenic carbon emissions from terrestrial systems as well as fossil fuel and industrial sources. We explore the implications of fully integrating terrestrial systems and the energy system into a comprehensive mitigation regime that limits atmospheric CO2 concentrations. We find that this comprehensive approach lowers the cost of meeting environmental goals but also carries with it profound implications for agriculture: Unmanaged ecosystems and forests expand, and food crop and livestock prices rise. Finally, we find that future improvement in food crop productivity directly affects land-use change emissions, making the technology for growing crops potentially important for limiting atmospheric CO2 concentrations.
Located in Resources / Climate Science Documents
File PDF document Virtual Hot Spots
Physiological ecologists who design computer models to predict how animals handle heat are forecasting the effects of climate change
Located in Resources / Climate Science Documents
File PDF document Roles and Effects of Environmental Carbon Dioxide in Insect Life
Key Words behavior, olfaction, antennal lobe, herbivory, oviposition Abstract Carbon dioxide (CO2) is a ubiquitous sensory cue that plays mul- tiple roles in insect behavior. In recent years understanding of the well-known role of CO2 in foraging by hematophagous insects (e.g., mosquitoes) has grown, and research on the roles of CO2 cues in the foraging and oviposition behavior of phytophagous insects and in behavior of social insects has stimulated interest in this area of insect sensory biology. This review considers those advances, as well as some of the mechanistic bases of the modulation of behavior by CO2 and important progress in our understanding of the detection and CNS processing of CO2 information in insects. Finally, this review briefly addresses how the ongoing increase in atmospheric CO2 levels may affect insect life.
Located in Resources / Climate Science Documents
File Can Plants Adapt? New Questions in Climate Change Research
As it becomes increasingly apparent that human activities are partly responsible for global warming, the focus of climate change research is shifting from the churning out of assessments to the pursuit of science that can test the robustness of existing models. The questions now being addressed are becoming more challenging:The questions now being addressed are becoming more challenging: Can water-use efficiency of plants keep up with rising temperatures? Will we see a greening period for some decades, even a century, before facing a rapid browndown as threshold temperatures are reached? Or could the thresholds be reached much sooner because of interactions of biophysical processes? Is the carbon storage issue missing the point?
Located in Resources / Climate Science Documents