Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4408 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming
Historical evidence shows that atmospheric greenhouse gas (GhG) concentrations increase during periods of warming, implying a positive feedback to future climate change. We quantified this feedback for CO2 and CH4 by combining the mathematics of feedback with empirical icecore information and general circulation model (GCM) climate sensitivity, finding that the warming of 1.5 –4.5C associated with anthropogenic doubling of CO2 is amplified to 1.6– 6.0C warming, with the uncertainty range deriving from GCM simulations and paleo temperature records. Thus, anthropogenic emissions result in higher final GhG concentrations, and therefore more warming, than would be predicted in the absence of this feedback. Moreover, a symmetrical uncertainty in any component of feedback, whether positive or negative, produces an asymmetrical distribution of expected temperatures skewed toward higher temperature. For both reasons, the omission of key positive feedbacks and asymmetrical uncertainty from feedbacks, it is likely that the future will be hotter than we think. Citation: Torn, M. S., and J. Harte (2006), Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming.
Located in Resources / Climate Science Documents
File PDF document TRY – a global database of plant traits
Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world’s 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.
Located in Resources / Climate Science Documents
File PDF document U.S. Forest Carbon and Climate Change Controversies and Win-Win Policy Approaches
As consensus grows about the serious impacts of global climate change, the role of forests in carbon storage is increasingly recognized. Terrestrial vegetation worldwide currently removes about 24 percent of the greenhouse gases released by industrial processes. Unfortunately, this contribution is approximately cancelled out by carbon released as a result of global deforestation and other ecosystem changes. Slowing or halting the rate of deforestation is thus one of the prime strategies to mitigate global climate change. The U.S. situation differs from the global one in several ways. Since both forest acres and average biomass per forest acre are currently increasing, as U.S. forests recover from past clearing or heavy harvest, our forest carbon stores are growing larger over time. However, our high rate of industrial emissions means that only about 10 percent of the carbon released from burning fossil fuels in the United States is captured by our forests. Moreover, net U.S. forest carbon sequestration has begun to slow in recent years as reforestation reaches its limits and development sprawls into more rural forested areas. U.S. forests could possibly capture a much higher portion of our industrial emissions, but only if we prevent forest conversion and development and manage our forests to maximize carbon stores.
Located in Resources / Climate Science Documents
File PDF document Unburnable Carbon – Are the world’s financial markets carrying a carbon bubble?
The Carbon Tracker initiative is a new way of looking at the carbon emissions problem. It is focused on the fossil fuel reserves held by publically listed companies and the way they are valued and assessed by markets. Currently financial markets have an unlimited capacity to treat fossil fuel reserves as assets. As governments move to control carbon emissions, this market failure is creating systemic risks for institutional investors, notably the threat of fossil fuel assets becoming stranded as the shift to a low-carbon economy accelerates.
Located in Resources / Climate Science Documents
File PDF document Scenario Planning: a Tool for Conservation in an Uncertain World
: Conservation decisions about how, when, and where to act are typically based on our expectations for the future. When the world is highly unpredictable and we are working from a limited range of expectations, however, our expectations will frequently be proved wrong. Scenario planning offers a framework for developing more resilient conservation policies when faced with uncontrollable, irreducible uncertainty. A scenario in this context is an account of a plausible future. Scenario planning consists of using a few contrasting scenarios to explore the uncertainty surrounding the future consequences of a decision. Ideally, scenarios should be constructed by a diverse group of people for a single, stated purpose. Scenario planning can incorporate a variety of quantitative and qualitative information in the decision-making process. Often, consideration of this diverse information in a systemic way leads to better decisions. Furthermore, the participation of a diverse group of people in a systemic process of collecting, discussing, and analyzing scenarios builds shared understanding. The robustness provided by the consideration of multiple possible futures has served several groups well; we present examples from business, government, and conservation planning that illustrate the value of scenario planning. For conservation, major benefits of using scenario planning are (1) increased understanding of key uncertainties, (2) incorporation of alternative perspectives into conservation planning, and (3) greater resilience of decisions to surprise.
Located in Resources / Climate Science Documents
File PDF document Call Off the Quest
Over the past 30 years, the climate research community has made valiant efforts to answer the “climate sensitivity” question: What is the long-term equilibrium warming response to a doubling of atmospheric carbon dioxide? Earlier this year, the Intergovernmental Panel on Climate Change (1) concluded that this sensitivity is likely to be in the range of 2° to 4.5°C, with a 1-in-3 chance that it is outside that range. The lower bound of 2°C is slightly higher than the 1.6°C proposed in the 1970s (2). 26 OCTOBER 2007 VOL 318 SCIENCE
Located in Resources / Climate Science Documents
File PDF document Why Is Climate Sensitivity So Unpredictable?
Uncertainties in projections of future climate change have not lessened substantially in past decades. Both models and observations yield broad probability distributions for long-term increases in global mean temperature expected from the doubling of atmospheric carbon dioxide, with small but finite probabilities of very large increases. We show that the shape of these probability distributions is an inevitable and general consequence of the nature of the climate system, and we derive a simple analytic form for the shape that fits recent published distributions very well. We show that the breadth of the distribution and, in particular, the probability of large temperature increases are relatively insensitive to decreases in uncertainties associated with the underlying climate processes. VOL 318 26 OCTOBER 2007
Located in Resources / Climate Science Documents
File PDF document Volcanic cause of catastrophe
From the timing, it looks as if an episode of marked oceanic oxygen deficiency during the Cretaceous was the result of undersea volcanism. Studies of such events are relevant to the warming world of today. NATURE|Vol 454|17 July 2008
Located in Resources / Climate Science Documents
File PDF document Are we in the midst of the sixth mass extinction? A view from the world of amphibians
Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environments. The amphibians—frogs, salamanders, and caecilians—may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that onethird or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infectious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction. 11466–11473  PNAS  August 12, 2008  vol. 105  suppl. 1
Located in Resources / Climate Science Documents
File PDF document Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change
Climate change has led to major changes in the phenology (the timing of seasonal activities, such as flowering) of some species but not others. The extent to which flowering-time response to temperature is shared among closely related species might have important consequences for community-wide patterns of species loss under rapid climate change. Henry David Thoreau initiated a dataset of the Concord, Massachusetts, flora that spans !150 years and provides information on changes in species abundance and flowering time. When these data are analyzed in a phylogenetic context, they indicate that change in abundance is strongly correlated with flowering-time response. Species that do not respond to temperature have decreased greatly in abundance, and include among others anemones and buttercups [Ranunculaceae pro parte (p.p.)], asters and campanulas (Asterales), bluets (Rubiaceae p.p.), bladderworts (Lentibulariaceae), dogwoods (Cornaceae), lilies (Liliales), mints (Lamiaceae p.p.), orchids (Orchidaceae), roses (Rosaceae p.p.), saxifrages (Saxifragales), and violets (Malpighiales). Because flowering-time response traits are shared among closely related species, our findings suggest that climate change has affected and will likely continue to shape the phylogenetically biased pattern of species loss in Thoreau’s woods PNAS ! November 4, 2008 ! vol. 105 ! no. 44 ! 17029–17033
Located in Resources / Climate Science Documents