-
Adaptation: Planning for Climate Change and Its Effects on Federal Lands
-
National forest managers are charged with tackling the effects of climate change on the natural resources
under their care. The Forest Service National Roadmap for Responding to Climate Change and the Climate
Change Performance Scorecard require managers to make significant progress in addressing climate
change by 2015. To help land managers meet this challenge, Forest Service scientists conducted three case studies on national forests and adjacent national parks and documented a wide range of scientific issues and solutions. They summarized the scientific foundation for climate change adaptation and made the information accessible to land managers by creating a climate change adaptation guidebookand web portal. Case study teams discovered that collaboration among scientists and land managers is crucial to adaptation planning, as are management plans targeted to the particular ecosystem conditions and management priorities of each region. Many current management practices are consistent with climate change
adaptation goals. Because timely implementation is critical, strategies are in development at the national
level to speed the implementation of science-based climate change adaptation processes in national
forests throughout the country.
Located in
Resources
/
Climate Science Documents
-
Tangled Trends for Temperate Rain Forests as Temperatures Tick Up
-
Climate change is altering growing
conditions in the temperate rain forest
region that extends from northern California
to the Gulf of Alaska. Longer,
warmer growing seasons are generally
increasing the overall potential for
forest growth in the region. However,
species differ in their ability to adapt
to changing conditions. For example,
researchers with Pacific Northwest
Research Station examined forest
trends for southeastern and southcentral
Alaska and found that, in 13
years, western redcedar showed a
4.2-percent increase in live-tree biomass,
while shore pine showed a
4.6-percent decrease. In general, the
researchers found that the amount of
live-tree biomass in extensive areas
of unmanaged, higher elevation forest
in southern Alaska increased by
as much as 8 percent over the 13-year
period, contributing to significant
carbon storage.
Hemlock dwarf mistletoe is another species
expected to fare well under warmer
conditions in Alaska. Model projections
indicate that habitat for this parasitic
species could increase 374 to 757 percent
over the next 100 years. This could
temper the prospects for western hemlock—a
tree species otherwise expected
to do well under future climate conditions
projected for southern Alaska.
In coastal forests of Washington and
Oregon, water availability may be a
limiting factor in future productivity,
with gains at higher elevations
but declines at lower elevations
Located in
Resources
/
Climate Science Documents
-
Forests in Decline: Yellow-Cedar Research Yields Prototype for Climate Change Adaptation Planning
-
Yellow-cedar has been dying across
600 miles of North Pacific coastal rain
forest—from Alaska to British Columbia—since
about 1880. Thirty years
ago, a small group of pathologists began
investigating possible biotic causes
of the decline. When no biotic cause
could be found, the scope broadened
into a research program that eventually
encompassed the fields of ecology,
soils, hydrology, ecophysiology, dendrochronology,
climatology, and landscape
analysis. Combined studies ultimately
revealed that the loss of this culturally,
economically, and ecologically valuable
tree is caused by a warming climate,
reduced snowpack, poor soil drainage,
and the species’ shallow roots. These
factors lead to fine-root freezing, which
eventually kills the trees.
The considerable knowledge gained
while researchers sought the cause
of widespread yellow-cedar mortality
forms the basis for a conservation
and adaptive management strategy. A
new approach to mapping that overlays
topography, cedar populations, soil
drainage, and snow enables land managers
to pinpoint locations where yellowcedar
habitat is expected to be suitable
or threatened in the future, thereby
bringing climate change predictions into
management scenarios.
The research program serves as a
prototype for evaluating the effects of
climate change in other landscapes. It
shows the value of long-term, multidisciplinary
research that encourages scientists
and land managers to work together
toward developing adaptive management
strategies
Located in
Resources
/
Climate Science Documents
-
Managing Wildfire Risk in Fire-Prone Landscapes: How Are Private Landowners Contributing?
-
The fire-prone landscapes of the West
include both public and private lands.
Wildfire burns indiscriminately across
property boundaries, which means that the
way potential fuels are managed on one
piece of property can affect wildfire risk
on neighboring lands.
Paige Fischer and Susan Charnley,
social scientists with the Pacific Northwest
Research Station, surveyed private
landowners in eastern Oregon to learn
how they perceive fire risk on their land
and what they do, if anything, to reduce
that risk. The scientists found that owners
who live on a forested parcel are much
more likely to reduce fuels than are those
who live elsewhere. Private forest owners
are aware of fire risk and knowledgeable
about methods for reducing fuels, but
are constrained by the costs and technical
challenges of protecting large acreages of
forested land. Despite the collective benefits
of working cooperatively, most of these
owners reduce hazardous fuels on their
land independently, primarily because of
their distrust about working with others,
and because of social norms associated
with private property ownership.
These results provide guidance for developing
more effective fuel reduction programs
that accommodate the needs and
preferences of private forest landowners.
The findings also indicate the potential
benefits of bringing landowners into collective
units to work cooperatively, raising
awareness about landscape-scale fire
risk, and promoting strategies for an “alllands”
approach to reducing wildfire risk
Located in
Resources
/
Climate Science Documents
-
DO CARBON OFFSETS WORK? THE ROLE OF FOREST MANAGEMENT IN GREENHOUSE GAS MITIGATION
-
As forest carbon offset projects become more popular, professional foresters are providing their expertise to support them. But when several members of the Society of American Foresters questioned the science
and assumptions used to design the projects, the organization decided to convene a task force to examine whether these projects can provide the intended climate benefits.The authors emphasize the carbon-storage benefits of using wood products in place of nonrenewable, energy-intensive materials and using woodbased
energy instead of fossil fuels.
Located in
Resources
/
Climate Science Documents
-
Looking at the Big Picture: The Importance of Landbase Interactions Among Forests, Agriculture, and Climate Mitigation Policies
-
Land use change is a key part of global
change. Deforestation, urban sprawl,
agriculture, and other human influences
have substantially altered natural ecosystems
and fragmented the global landscape.
Slowing down deforestation and
afforesting environmentally sensitive
agricultural land are important steps for
mitigating climate change. Because no
policy operates in a vacuum, however,
it’s important to consider how separate
climate mitigation policies might interact
with each other.
Ralph Alig, a scientist with the Pacific
Northwest Research Station, and his colleagues
evaluated the potential impacts
of policy instruments available for climate
change mitigation. By using the
Forest and Agriculture Sector Optimization
Greenhouse Gases model, the
researchers analyzed how land might
shift between forestry and agriculture
and to more developed uses depending
on different land use policies and several
carbon pricing scenarios. They also
examined the likely effects on timber,
crop prices, and bioenergy production
if landowners were paid to sequester
carbon on their land. The researchers
found that projected competition for raw
materials is greatest in the short term,
over the first 25 years of the 50-year
projections.
Climate change is occurring within a
matrix of other changes. By 2050, an additional
3 billion people are expected to
be living on Earth, needing food, clean
water, and places to live. Incentives
for landowners to maintain undeveloped
land will be vital to sequestering
carbon and providing other services of
intact ecosystems
Located in
Resources
/
Climate Science Documents
-
Tangled Trends for Temperate Rain Forests as Temperatures Tick Up
-
Climate change is altering growing
conditions in the temperate rain forest
region that extends from northern California
to the Gulf of Alaska. Longer,
warmer growing seasons are generally
increasing the overall potential for
forest growth in the region. However,
species differ in their ability to adapt
to changing conditions. For example,
researchers with Pacific Northwest
Research Station examined forest
trends for southeastern and southcentral
Alaska and found that, in 13
years, western redcedar showed a
4.2-percent increase in live-tree biomass,
while shore pine showed a
4.6-percent decrease. In general, the
researchers found that the amount of
live-tree biomass in extensive areas
of unmanaged, higher elevation forest
in southern Alaska increased by
as much as 8 percent over the 13-year
period, contributing to significant
carbon storage.
Hemlock dwarf mistletoe is another species
expected to fare well under warmer
conditions in Alaska. Model projections
indicate that habitat for this parasitic
species could increase 374 to 757 percent
over the next 100 years. This could
temper the prospects for western hemlock—a
tree species otherwise expected
to do well under future climate conditions
projected for southern Alaska.
In coastal forests of Washington and
Oregon, water availability may be a
limiting factor in future productivity,
with gains at higher elevations
but declines at lower elevations.
Located in
Resources
/
Climate Science Documents
-
The Role of Local Governance and Institutions in Livelihoods Adaptation to Climate Change
-
The most important implications of climate change from the perspective of the
World Bank concern its potentially disastrous impacts on the prospects for development,
especially for poorer populations in the global South. Earlier writings on climate change
had tended to focus more on its links with biodiversity loss, spread of pathogens and
diseases, land use planning, ecosystem change, and insurance markets, rather than its
connections with development (Easterling and Apps 2005, Harvell et al. 2002, Tompkins
and Adger 2004). But as the Social Development Department of the World Bank recently
noted, “Climate change is the defining development challenge of our generation” (SDV,
2007: 2). These words echo the World Bank President Robert Zoellick’s statement at the
United Nations Climate Change Conference in 2007 in Bali where he called climate
change a “development, economic, and investment challenge.” Indeed, understanding the
relationship between climate change, the human responses it necessitates, and how
institutions shape such responses is an increasingly urgent need. This report directs
attention towards a subset of such relationships, focusing on rural institutions and poor
populations in the context of climate variability and change-induced adaptations.
Located in
Resources
/
Climate Science Documents
-
Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation
-
Temperature controls the rate of fundamental biochemical processes
and thereby regulates organismal attributes including development
rate and survival. The increase in metabolic rate with
temperature explains substantial among-species variation in lifehistory
traits, population dynamics, and ecosystem processes.
Temperature can also cause variability in metabolic rate within
species. Here, we compare the effect of temperature on a key
component of marine life cycles among a geographically and
taxonomically diverse group of marine fish and invertebrates.
Although innumerable lab studies document the negative effect of
temperature on larval development time, little is known about the
generality versus taxon-dependence of this relationship. We
present a unified, parameterized model for the temperature dependence
of larval development in marine animals. Because the
duration of the larval period is known to influence larval dispersal
distance and survival, changes in ocean temperature could have
a direct and predictable influence on population connectivity,
community structure, and regional-to-global scale patterns of
biodiversity.
Located in
Resources
/
Climate Science Documents
-
Politics for the day after tomorrow: The logic of apocalypse in global climate politics
-
The recent global climate change discourse is a prominent example of a securitization of environmental
issues. While the problem is often framed in the language of existentialism, crisis or even apocalypse, climate
discourses rarely result in exceptional or extraordinary measures, but rather put forth a governmental
scheme of piecemeal and technocratic solutions often associated with risk management. This article argues
that this seeming paradox is no accident but follows from a politics of apocalypse that combines two logics
– those of security and risk – which in critical security studies are often treated as two different animals.
Drawing on the hegemony theory of Ernesto Laclau and Chantal Mouffe, however, this article shows
that the two are inherently connected. In the same way as the Christian pastorate could not do without
apocalyptic imageries, today’s micro-politics of risk depends on a series of macro-securitizations that
enable and legitimize the governmental machinery. This claim is backed up by an inquiry into current global
discourses of global climate change regarding mitigation, adaptation and security implications. Although
these discourses are often framed through the use of apocalyptic images, they rarely result in exceptional
or extraordinary measures, but rather advance a governmental scheme of risk management. Tracing the
relationship between security and risk in these discourses, we use the case of climate change to highlight
the relevance of our theoretical argument.
Located in
Resources
/
Climate Science Documents