Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4408 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Old-Growth Forests Can Accumulate Carbon in Soils
1st paragraph: ld-growth forests have traditionally been considered negligible as carbon sinks because carbon uptake has been thought to be balanced by respiration (1). We show that soils in the top 20-cm soil layer in preserved old-growth forests in southern China accumulated atmospheric carbon at an unexpectedly high rate from 1979 to 2003. This phenomenon indicates the need for future research on the complex responses and adaptation of belowground processes to global environmental change.
Located in Resources / Climate Science Documents
File PDF document Oligocene CO2 Decline Promoted C4 Photosynthesis in Grasses
C4 photosynthesis is an adaptation derived from the more common C3 photosynthetic pathway that con- fers a higher productivity under warm temperature and low atmospheric CO2 concentration [1, 2]. C4 evolution has been seen as a consequence of past atmospheric CO2 decline, such as the abrupt CO2 fall 32–25 million years ago (Mya) [3–6]. This relationship has never been tested rigorously, mainly because of a lack of accurate estimates of divergence times for the different C4 lineages [3]. In this study, we inferred a large phylogenetic tree for the grass family and es- timated, through Bayesian molecular dating, the ages of the 17 to 18 independent grass C4 lineages. The first transition from C3 to C4 photosynthesis occurred in the Chloridoideae subfamily, 32.0–25.0 Mya. The link between CO2 decrease and transition to C4 pho- tosynthesis was tested by a novel maximum likeli- hood approach. We showed that the model incorpo- rating the atmospheric CO2 levels was significantly better than the null model, supporting the importance of CO2 decline on C4 photosynthesis evolvability. This finding is relevant for understanding the origin of C4 photosynthesis in grasses, which is one of the most successful ecological and evolutionary innovations in plant history.
Located in Resources / Climate Science Documents
File PDF document Impacts of reforestation upon sediment load and water outflow in the Lower Yazoo River Watershed, Mississippi
Among the world’s largest coastal and river basins, the Lower Mississippi River Alluvial Valley (LMRAV) is one of the most disturbed by human activities. This study ascertained the impacts of reforestation on water outflow attenuation (i.e., water flow out of the watershed outlet) and sediment load reduction in the Lower Yazoo River Watershed (LYRW) within the LMRAV using the US-EPA’s BASINS-HSPF model. The model was calibrated and validated with available experimental data prior to its application. Two simulation scenarios were then performed: one was chosen to predict the water outflow and sediment load without reforestation and the other was selected to project the potential impacts of reforestation upon water outflow attenuation and sediment load reduction following the conversion of 25, 50, 75, and 100% of the agricultural lands with most lands near or in the batture of the streams. Comparison of the two simulation scenarios (i.e., with and without reforestation) showed that a conversion of agricultural land into forests attenuated water outflow and reduced sediment load. In general, a two-fold increase in forest land area resulted in approximately a two-fold reduction in annual water outflow volume and sediment load mass, which occurred because forests absorb water and reduce surface water runoff and prevent soil erosion. On average, over a 10-year simulation, the specific water outflow attenuation and sediment load reduction were, respectively, 250 m3 /ha/y and 4.02 metric ton/ha/y. Seasonal variations of water outflow attenuation and sediment load reduction occurred with the maximum attenuation/reduction in winter and the minimum attenuation/reduction in summer. Our load duration curve analysis further confirmed that an increase in forest land area reduced the likelihood of a given sediment load out of the watershed outlet. This study suggests that reforestation in or around the batture of streams is a useful practice for water outflow attenuation and sediment load reduction.
Located in Resources / Climate Science Documents
File PDF document The challenge of hot drought
1st paragraph: rought is heating up around the warm- ing world. Particularly hot drought has cost more than US$40 billion and claimed 218 human lives since 2010 in the United States alone1. These hot and dry conditions have also contributed to unusually widespread and devastating wildfires1, fuelled by wide expanses of weakened and dead trees that were unable to deal with heat stress and subsequent insect attack2. Yet, to get a real sense of how this recent change in drought severity might shape the future, one has to look to the past. An analysis of regional and pan- continental North American drought over the past 1,000 years, reported by Cook et al.3 in the Journal of Climate, makes it clear that recent droughts, as costly as they have been, are only a taste of what might lie ahead, independently of any big climate change.
Located in Resources / Climate Science Documents
File PDF document FIXING THE SKY
When nations made plans to save the ozone layer, they didn’t factor in global warming. Quirin Schiermeier reports on how two environmental problems complicate each other.
Located in Resources / Climate Science Documents
File Moisture transport across Central America as a positive feedback on abrupt climatic changes
Moisture transport from the Atlantic to the Pacific ocean across Central America leads to relatively high salinities in the North Atlantic Ocean1 and contributes to the formation of North Atlantic Deep Water2. This deep water formation varied strongly between Dansgaard/Oeschger interstadials and Heinrich events— millennial-scale abrupt warm and cold events, respectively, during the last glacial period3. Increases in the moisture transport across Central America have been proposed to coincide with northerly shifts of the Intertropical Convergence Zone and with Dansgaard/ Oeschger interstadials, with opposite changes for Heinrich events4. Here we reconstruct sea surface salinities in the eastern equatorial Pacific Ocean over the past 90,000 years by comparing palaeotemperature estimates from alkenones and Mg/Ca ratios with foraminiferal oxygen isotope ratios that vary with both tem- perature and salinity. We detect millennial-scale fluctuations of sea surface salinities in the eastern equatorial Pacific Ocean of up to two to four practical salinity units. High salinities are associated with the southward migration of the tropical Atlantic Intertropical Convergence Zone, coinciding with Heinrich events and with Greenland stadials5. The amplitudes of these salinity variations are significantly larger on the Pacific side of the Panama isthmus, as inferred from a comparison of our data with a palaeoclimate record from the Caribbean basin6. We conclude that millennial- scale fluctuations of moisture transport constitute an important feedback mechanism for abrupt climate changes, modulating the North Atlantic freshwater budget and hence North Atlantic Deep Water formation.
Located in Resources / Climate Science Documents
File PDF document Ecological and Evolutionary Responses to Recent Climate Change
Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups. These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research. Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change. Tropical coral reefs and amphibians have been most negatively affected. Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming. Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins. Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level.
Located in Resources / Climate Science Documents
File A globally coherent fingerprint of climate change impacts across natural systems
Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a ‘systematic trend’. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Located in Resources / Climate Science Documents
File Troff document The Perfect Ocean for Drought
The 1998 –2002 droughts spanning the United States, southern Europe, and South- west Asia were linked through a common oceanic influence. Cold sea surface temperatures (SSTs) in the eastern tropical Pacific and warm SSTs in the western tropical Pacific and Indian oceans were remarkably persistent during this period. Climate models show that the climate signals forced separately by these regions acted synergistically, each contributing to widespread mid-latitude drying: an ideal scenario for spatially expansive, synchronized drought. The warmth of the Indian and west Pacific oceans was unprecedented and consistent with greenhouse gas forcing. Some implications are drawn for future drought.
Located in Resources / Climate Science Documents
File PDF document Increasing River Discharge to the Arctic Ocean
Synthesis of river-monitoring data reveals that the average annual discharge of fresh water from the six largest Eurasian rivers to the Arctic Ocean increased by7%from1936to1999.Theaverageannualrateofincreasewas2.0􏰤0.7 cubic kilometers per year. Consequently, average annual discharge from the six rivers is now about 128 cubic kilometers per year greater than it was when routine measurements of discharge began. Discharge was correlated with changes in both the North Atlantic Oscillation and global mean surface air temperature. The observed large-scale change in freshwater flux has potentially important implications for ocean circulation and climate.
Located in Resources / Climate Science Documents