Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4408 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Extent and scale of local adaptation in salmonid fishes: review and meta-analysis
What is the extent and scale of local adaptation (LA)? How quickly does LA arise? And what is its underlying molecular basis? Our review and meta-analysis on salmonid fishes estimates the frequency of LA to be B55–70%, with local populations having a 1.2 times average fitness advantage relative to foreign populations or to their perfor- mance in new environments. Salmonid LA is evident at a variety of spatial scales (for example, few km to41000 km) and can manifest itself quickly (6–30 generations). As the geographic scale between populations increases, LA is generally more frequent and stronger. Yet the extent of LA in salmonids does not appear to differ from that in other assessed taxa. Moreover, the frequency with which foreign salmonid populations outperform local populations (B23– 35%) suggests that drift, gene flow and plasticity often limit or mediate LA. The relatively few studies based on candidate gene and genomewide analyses have identified footprints of selection at both small and large geographical scales, likely reflecting the specific functional properties of loci and the associated selection regimes (for example, local niche partitioning, pathogens, parasites, photoperiodicity and seasonal timing). The molecular basis of LA in salmonids is still largely unknown, but differential expression at the same few genes is implicated in the convergent evolution of certain phenotypes. Collectively, future research will benefit from an integration of classical and molecular approaches to understand: (i) species differences and how they originate, (ii) variation in adaptation across scales, life stages, population sizes and environmental gradients, and (iii) evolutionary responses to human activities.
Located in Resources / Climate Science Documents
File PDF document Extreme climatic event drives range contraction of a habitat-forming species
Species distributions have shifted in response to global warming in all major ecosystems on the Earth. Despite cogent evidence for these changes, the underlying mechanisms are poorly understood and currently imply gradual shifts. Yet there is an increasing appreciation of the role of discrete events in driving ecological change. We show how a marine heat wave (HW) eliminated a prominent habitat-forming seaweed, Scytothalia dorycarpa, at its warm distribution limit, causing a range contraction of approximately 100km (approx. 5% of its global distribution). Seawater temperatures during the HW exceeded the seaweed’s physiological threshold and caused extirpation of marginal populations, which are unlikely to recover owing to life-history traits and oceanographic processes. Scytothalia dorycarpa is an important canopy-forming seaweed in temperate Australia, and loss of the species at its range edge has caused structural changes at the community level and is likely to have ecosystem-level implications. We show that extreme warming events, which are increasing in magnitude and frequency, can force step-wise changes in species distributions in marine ecosystems. As such, return times of these events have major implications for projections of species distributions and ecosystem structure, which have typically been based on gradual warming trends.
Located in Resources / Climate Science Documents
File PDF document Extreme contagion in global habitat clearance
Habitat clearance remains the major cause of biodiversity loss, with consequences for ecosystem services and for people. In response to this, many global conservation schemes direct funds to regions with high rates of recent habitat destruction, though some also emphasize the conservation of remaining large tracts of intact habitat. If the pattern of habitat clearance is highly contagious, the latter approach will help prevent destructive processes gaining a foothold in areas of contiguous intact habitat. Here, we test the strength of spatial contagion in the pattern of habitat clearance. Using a global dataset of land-cover change at 50 􏰢 50 km resolution, we discover that intact habitat areas in grid cells are refractory to clearance only when all neighbouring cells are also intact. The likelihood of loss increases dramatically as soon as habitat is cleared in just one neighbouring cell, and remains high thereafter. This effect is consistent for forests and grassland, across biogeographic realms and over centuries, constituting a coherent global pattern. Our results show that landscapes become vulnerable to wholesale clearance as soon as threatening processes begin to penetrate, so actions to prevent any incursions into large, intact blocks of natural habitat are key to their long-term persistence. Keywords: habitat loss; global change biology; conservation; wilderness
Located in Resources / Climate Science Documents
File PDF document Extreme Weather Events in Europe: preparing for climate change adaptation
This study arises from the concern that changes in weather patterns will be one of the principal effects of climate change and with these will come extreme weather. This is of considerable consequence in Europe as it impacts on the vulnerability of communities across the continent and exposes them to environmental risks. It is now widely recognised that failures in international efforts to agree on the action necessary to limit global climate change mean that adaptation to its consequences is necessary and unavoidable (Solomon et al., 2007). The changes anticipated in the occurrence and character of extreme weather events are, in many cases, the dominant factor in designing adaptation measures. Policy communities within the EU have begun to consider appropriate responses to these changes and an EU adaptation strategy is under active development and implementation. There are also sectoral EU initiatives, for example on water shortages and heat waves, and, at a regional level, on planning for floods and storms. The basic and unavoidable challenge for decision makers is to find workable and cost-effective solutions when faced with increased probabilities of very costly adverse impacts. Information about the nature and scale of these changes is essential to guide decisions on appropriate solutions. Agenda-setting for climate change and adaptation has to take place in a social or/and political setting. Scientific information about temporal changes in the probability distributions of extreme weather events over Europe, the main focus of this report, is important for informing the social and political processes that it is hoped will lead to adequate climate-change adaptation measures in Europe. This report is focused on providing a working-level assessment of the current state of the quantitative understanding of relevant extreme weather phenomena and their impacts.
Located in Resources / Climate Science Documents
Fact Sheets
Located in Information Materials
Fact Sheets
Located in Information Materials
Fact Sheets
Located in Resources
Fact Sheets
Located in Resources
Fact Sheets Page
Located in Training / General Training Materials
File PDF document Farrer 1892.pdf
Located in Resources / TRB Library / EDD-FIK