-
Disappearing Arctic sea ice reduces available water in the American west
-
Recent decreases in Arctic sea ice cover and the probability of continued decreases have raised the question of how reduced Arctic sea ice cover will influence extrapolar climate. Using a fully coupled earth system model, we generate one possible future Arctic sea ice distribution. We use this ‘‘future’’ sea ice distribution and the corresponding sea surface temperatures (SSTs) to run a fixed SST and ice concentration experiment with the goal of determining direct climate responses to the reduction in Arctic sea ice that is projected to occur in the next 50 years. Our results indicate that future reductions in Arctic sea ice cover could significantly reduce available water in the American west and highlight the fact that the most severe impacts of future climate change will likely be at a regional scale.
Located in
Resources
/
Climate Science Documents
-
Discussion Reply
-
Located in
Help
/
Help Images
-
Dispersal will limit ability of mammals to track climate change in the Western Hemisphere
-
As they have in response to past climatic changes, many species will shift their distributions in response to modern climate change. However, due to the unprecedented rapidity of projected climatic changes, some species may not be able to move their ranges fast enough to track shifts in suitable climates and associated habitats. Here, we investigate the ability of 493 mammals to keep pace with projected climatic changes in the Western Hemisphere. We modeled the velocities at which species will likely need to move to keep pace with projected changes in suitable climates. We compared these velocities with the velocities at which species are able to move as a function of dispersal distances and dispersal frequencies. Across the Western Hemisphere, on average, 9.2% of mammals at a given location will likely be unable to keep pace with climate change. In some places, up to 39% of mammals may be unable to track shifts in suitable climates. Eighty-seven percent of mammalian species are expected to experience reductions in range size and 20% of these range reductions will likely be due to limited dispersal abilities as opposed to reductions in the area of suitable climate. Because climate change will likely outpace the response capacity of many mammals, mammalian vulnerability to climate change may be more extensive than previously anticipated.
Located in
Resources
/
Climate Science Documents
-
Display_Default_Page
-
Located in
Help
/
Help Images
-
Display_Drop_Down
-
Located in
Help
/
Help Images
-
Dissecting insect responses to climate warming: overwintering and post-diapause performance in the southern green stink bug, Nezara viridula, under simulated climate-change conditions
-
The effect of simulated climate change on overwintering and postdiapause
reproductive performance is studied in Nezara viridula (L.) (Heteroptera:
Pentatomidae) close to the species’ northern range limit in Japan. Insects are reared
from October to June under quasi-natural (i.e. ambient outdoor) conditions and in
a transparent incubator, in which climate warming is simulated by adding 2.5 ◦
C to
the ambient temperatures. Despite the earlier assumption that females of N. viridula
overwinter in diapause, whereas males do so in quiescence, regular dissections show
that the two sexes overwinter in a state of true diapause. During winter, both sexes are
dark-coloured and have undeveloped reproductive organs. Resumption of development
does not start until late March. During winter, the effect of simulated warming on the
dynamics and timing of physiological processes appears to be limited. However, the
warming significantly enhances winter survival (from 27–31% to 47–70%), which
is a key factor in range expansion of N. viridula. In spring, the effect of simulated
warming is complex. It advances the post-diapause colour change and transition from
dormancy to reproduction. The earlier resumption of development is more pronounced
in females: in April, significantly more females are already in a reproductive state
under the simulated warming than under quasi-natural conditions. In males, the
tendency is similar, although the difference is not significant. Warming significantly
enhances spring survival and percentage of copulating adults, although not the percentage
of ovipositing females and fecundity. The results suggest that, under the expected
climate-warming conditions, N. viridula will likely benefit mostly as a result of
increased winter and spring survival and advanced post-diapause reproduction. Further
warming is likely to allow more adults to survive the critical cold season and contribute
(both numerically and by increasing heterogeneity) to the post-overwintering population
growth, thus promoting the establishment of this species in newly-colonized
area
Located in
Resources
/
Climate Science Documents
-
Distler Bleam 1995.pdf
-
Located in
Resources
/
TRB Library
/
DIN-ECO
-
Distribution and characterization of in‐channel large wood in relation to geomorphic patterns on a low‐gradient river
-
A 177 river km georeferenced aerial survey of in‐channel large wood (LW) on the lower Roanoke River, NC was conducted to determine LW dynamics and distributions on an eastern USA low‐gradient large river. Results indicate a system with approximately 75% of the LW available for transport either as detached individual LW or as LW in log jams. There were approximately 55 individual LW per river km and another 59 pieces in log jams per river km. Individual LW is a product of bank erosion (73% is produced through erosion) and is isolated on the mid and upper banks at low flow. This LW does not appear to be important for either aquatic habitat or as a human risk. Log jams rest near or at water level making them a factor in bank complexity in an otherwise homogenous fine‐grained channel. A segmentation test was performed using LW frequency by river km to detect breaks in longitudinal distribution and to define homogeneous reaches of LW frequency. Homogeneous reaches were then analyzed to determine their relationship to bank height, channel width/depth, sinuosity, and gradient. Results show that log jams are a product of LW transport and occur more frequently in areas with high snag concentrations, low to intermediate bank heights, high sinuosity, high local LW recruitment rates, and narrow channel widths. The largest concentration of log jams (21.5 log jams/km) occurs in an actively eroding reach. Log jam concentrations downstream of this reach are lower due to a loss of river competency as the channel reaches sea level and the concurrent development of unvegetated mudflats separating the active channel from the floodplain forest. Substantial LW transport occurs on this low‐gradient, dam‐regulated large river; this study, paired with future research on transport mechanisms should provide resource managers and policymakers with options to better manage aquatic habitat while mitigating possible negative impacts to human interests
Located in
Resources
/
Climate Science Documents
-
Distribution of the American Black Duck
-
Distribution of the American Black Duck. This species breeds locally South to the dashed line.
Located in
Resources
/
Images
-
Distribution of the American Black Duck
-
Distribution of the American Black Duck. This species breeds locally South to the dashed line.
Located in
Black-Duck-site-images