-
Significant anthropogenic-induced changes of climate classes since 1950
-
Anthropogenic forcings have contributed to global and regional warming in the last few decades and likely affected terrestrial precipitation. Here we examine changes in major Köppen climate classes from gridded observed data and their uncertainties due to internal climate variability using control simulations from Coupled Model Intercomparison Project 5 (CMIP5). About 5.7% of the global total land area has shifted toward warmer and drier climate types from 1950–2010, and significant changes include expansion of arid and high-latitude continental climate zones, shrinkage in polar and midlatitude continental climates, poleward shifts in temperate, continental and polar climates, and increasing average elevation of tropical and polar climates. Using CMIP5 multi-model averaged historical simulations forced by observed anthropogenic and natural, or natural only, forcing components, we find that these changes of climate types since 1950 cannot be explained as natural variations but are driven by anthropogenic factors.
Located in
Resources
/
Climate Science Documents
-
THE COST OF INACTION: RECOGNISING THE VALUE AT RISK FROM CLIMATE CHANGE
-
The asset management industry—and thus the wider community of investors of all sizes— is facing the prospect of significant losses from the effects of climate change. Assets can be directly damaged by floods, droughts and severe storms, but portfolios can also be harmed indirectly, through weaker growth and lower asset returns. Climate change is a long-term, probably irreversible problem beset by substantial uncertainty. Crucially, however, climate change is a problem of extreme risk: this means that the average losses to be expected are not the only source of concern; on the contrary, the outliers, the particularly extreme scenarios, may matter most of all.
Located in
Resources
/
Climate Science Documents
-
Too late for two degrees? Low carbon economy index 2012
-
Even doubling our current rate of decarbonisation would still lead to emissions consistent with 6 degrees of
warming by the end of the century. To give ourselves a more than 50% chance of avoiding 2 degrees will
require a six-fold improvement in our rate of decarbonisation.
Located in
Resources
/
Climate Science Documents