Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
18 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Dispersal will limit ability of mammals to track climate change in the Western Hemisphere
As they have in response to past climatic changes, many species will shift their distributions in response to modern climate change. However, due to the unprecedented rapidity of projected climatic changes, some species may not be able to move their ranges fast enough to track shifts in suitable climates and associated habitats. Here, we investigate the ability of 493 mammals to keep pace with projected climatic changes in the Western Hemisphere. We modeled the velocities at which species will likely need to move to keep pace with projected changes in suitable climates. We compared these velocities with the velocities at which species are able to move as a function of dispersal distances and dispersal frequencies. Across the Western Hemisphere, on average, 9.2% of mammals at a given location will likely be unable to keep pace with climate change. In some places, up to 39% of mammals may be unable to track shifts in suitable climates. Eighty-seven percent of mammalian species are expected to experience reductions in range size and 20% of these range reductions will likely be due to limited dispersal abilities as opposed to reductions in the area of suitable climate. Because climate change will likely outpace the response capacity of many mammals, mammalian vulnerability to climate change may be more extensive than previously anticipated.
Located in Resources / Climate Science Documents
File PDF document Early warning signals of extinction in deteriorating environments
During the decline to extinction, animal populations may present dynamical phenomena not exhibited by robust populations (1,2). Some of these phenomena, such as the scaling of demographic variance, are related to small size (3–6) whereas others result from density- dependent nonlinearities (7). Although understanding the causes of population extinction has been a central problem in theoretical biology for decades (8), the ability to anticipate extinction has remained elusive (9). Here we argue that the causes of a population’s decline are central to the predictability of its extinction. Specifically, environmental degradation may cause a tipping point in population dynamics, corresponding to a bifurcation in the underlying population growth equations, beyond which decline to extinction is almost certain. In such cases, imminent extinction will be signalled by critical slowing down (CSD) critical slowing down
Located in Resources / Climate Science Documents
File PDF document Ecological extinction and evolution in the brave new ocean
The great mass extinctions of the fossil record were a major creative force that provided entirely new kinds of opportunities for the subsequent explosive evolution and diversification of surviving clades. Today, the synergistic effects of human impacts are laying the groundwork for a comparably great Anthropocene mass extinction in the oceans with unknown ecological and evolutionary consequences. Synergistic effects of habitat destruction, overfishing, introduced species, warming, acidification, toxins, and massive runoff of nutrients are transforming once complex ecosystems like coral reefs and kelp forests into monotonous level bottoms, transforming clear and productive coastal seas into anoxic dead zones, and transforming complex food webs topped by big animals into simplified, microbially dominated ecosystems with boom and bust cycles of toxic dinoflagel- late blooms, jellyfish, and disease. Rates of change are increasingly fast and nonlinear with sudden phase shifts to novel alternative community states. We can only guess at the kinds of organisms that will benefit from this mayhem that is radically altering the selective seascape far beyond the consequences of fishing or warming alone. The prospects are especially bleak for animals and plants compared with metabolically flexible microbes and algae. Halting and ultimately reversing these trends will require rapid and fundamental changes in fisheries, agricultural practice, and the emissions of green- house gases on a global scale.
Located in Resources / Climate Science Documents
File ECMAScript program Ecological responses to recent climate change
There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organizational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible.
Located in Resources / Climate Science Documents
File PDF document Effect of habitat area and isolation on fragmented animal populations
Habitat destruction has driven many once-contiguous animal populations into remnant patches of varying size and isolation. The underlying framework for the conservation of fragmented popu- lations is founded on the principles of island biogeography, wherein the probability of species occurrence in habitat patches varies as a function of patch size and isolation. Despite decades of research, the general importance of patch area and isolation as predictors of species occupancy in fragmented terrestrial systems remains unknown because of a lack of quantitative synthesis. Here, we compile occupancy data from 1,015 bird, mammal, reptile, amphibian, and invertebrate population networks on 6 continents and show that patch area and isolation are surprisingly poor predictors of occupancy for most species. We examine factors such as improper scaling and biases in species representation as expla- nations and find that the type of land cover separating patches most strongly affects the sensitivity of species to patch area and isolation. Our results indicate that patch area and isolation are indeed important factors affecting the occupancy of many species, but properties of the intervening matrix should not be ignored. Improving matrix quality may lead to higher conservation returns than manipulating the size and configuration of remnant patches for many of the species that persist in the aftermath of habitat destruction. incidence function 􏰂 island biogeography 􏰂 logistic regression 􏰂 metaanalysis 􏰂 occupancy
Located in Resources / Climate Science Documents
File PDF document ESSAY : The worst-case scenario
Stephen Schneider explores what a world with 1,000 parts per million of CO2 in its atmosphere might look like.
Located in Resources / Climate Science Documents
File PDF document Fear of failure in conservation: The problem and potential solutions to aid conservation of extremely small populations
The potential for extirpation of extremely small populations (ESPs) is high due to their vulnerability to demographic and environmental stochasticity and negative impacts of human activity. We argue that conservation actions that could aid ESPs are sometimes delayed because of a fear of failure. In human psychology, the fear of failure is composed of several distinct cognitive elements, including ‘‘uncertainty about the future’’ and ‘‘upsetting important others.’’ Uncertainty about the future is often driven by information obstacles in conservation: information is either not easily shared among practitioners or information is lacking. Whereas, fear of upsetting important others can be due to apprehension about angering constituents, peers, funders, and other stakeholders. We present several ways to address these fears in hopes of improving the conservation process. We describe methods for increased information sharing and improved decision-making in the face of uncertainty, and recommend a shift in focus to cooperative actions and improving methods for evaluating success. Our hope is that by tackling stumbling blocks due to the apprehension of failure, conservation and management organizations can take steps to move from fear to action.
Located in Resources / Climate Science Documents
Person ODT template Stoleson, Scott
Located in Expertise Search