-
Reconciling nature conservation and traditional farming practices: a spatially explicit framework to assess the extent of High Nature Value farmlands in the European countryside
-
Over past centuries, European landscapes have been shaped by human management. Traditional, low intensity agricultural practices, adapted to local climatic, geographic, and environmental conditions, led to a rich, diverse cultural and natural heritage, reflected in a wide range of rural landscapes, most of which were preserved until the advent of industrialized agriculture (Bignal & McCracken 2000; Paracchini et al. 2010; Oppermann et al. 2012). Agricultural landscapes currently account for half of Europe’s territory (Overmars et al. 2013), with ca. 50% of all species relying on agricultural habitats at least to some extent (Kristensen 2003; Moreira et al. 2005; Halada et al. 2011). Due to their acknowledged role in the maintenance of high levels of biodiversity, low-intensity farming systems have been highlighted as critical to nature conservation and protection of the rural environment (Beaufoy et al. 1994; Paracchini et al. 2010; Halada et al.2011; Egan & Mortensen 2012).
Located in
Resources
/
Climate Science Documents
-
Scenarios of future land use change around United States’ protected areas
-
Land use change around protected areas can diminish their conservation value, making it important to
predict future land use changes nearby. Our goal was to evaluate future land use changes around protected
areas of different types in the United States under different socioeconomic scenarios. We analyzed
econometric-based projections of future land use change to capture changes around 1260 protected
areas, including National Forests, Parks, Refuges, and Wilderness Areas, from 2001 to 2051, under different
land use policies and crop prices. Our results showed that urban expansion around protected areas
will continue to be a major threat, and expand by 67% under business-as-usual conditions.
Concomitantly, a substantial number of protected areas will lose natural vegetation in their surroundings.
National land-use policies or changes in crop prices are not likely to affect the overall pattern of land use,
but can have effects in certain regions. Discouraging urbanization through zoning, for example, can
reduce future urban pressures around National Forests and Refuges in the East, while the implementation
of an afforestation policy can increase the amount of natural vegetation around some Refuges throughout
the U.S. On the other hand, increases in crop prices can increase crop/pasture cover around some protected
areas, and limit the potential recovery of natural vegetation. Overall, our results highlight that future
land-use change around protected areas is likely to be substantial but variable among regions and
protected area types. Safeguarding the conservation value of protected areas may require serious consideration of threats and opportunities arising from future land use.
Located in
Resources
/
Climate Science Documents
-
Significant anthropogenic-induced changes of climate classes since 1950
-
Anthropogenic forcings have contributed to global and regional warming in the last few decades and likely affected terrestrial precipitation. Here we examine changes in major Köppen climate classes from gridded observed data and their uncertainties due to internal climate variability using control simulations from Coupled Model Intercomparison Project 5 (CMIP5). About 5.7% of the global total land area has shifted toward warmer and drier climate types from 1950–2010, and significant changes include expansion of arid and high-latitude continental climate zones, shrinkage in polar and midlatitude continental climates, poleward shifts in temperate, continental and polar climates, and increasing average elevation of tropical and polar climates. Using CMIP5 multi-model averaged historical simulations forced by observed anthropogenic and natural, or natural only, forcing components, we find that these changes of climate types since 1950 cannot be explained as natural variations but are driven by anthropogenic factors.
Located in
Resources
/
Climate Science Documents
-
Sour Streams in Appalachia: Mapping Nature’s Buffer Against Sulfur Deposition
-
Sulfur emissions are regulated by the Environmental Protection Agency, but sulfuric acid that has
leached into soil and streams can linger in the environment and harm vegetation and aquatic life. Some
watersheds are better able to buffer streams against acidification than others; scientists learned why in
southern Appalachia.
Located in
Resources
/
Climate Science Documents
-
The influence of contextual cues on the perceived status of consumption-reducing behavior
-
The question of whether and when behaviors that reduce overall consumption are associated with low status has not been adequately explored. Previous research suggests that some low cost environmentally-friendly behaviors are stigmatized, but has not accounted for the impact of contextual information on perceived status. Here, we use costly signaling theory to describe why consumption-reducing behaviors may be associated with low status and when and how this perception might change. We report two empirical studies in the U.S. that use a large sample of graduate students (N = 447) to examine the effects of contextual information on how consumption-reducing behaviors are perceived. We then explore the perceived appropriateness of consumption-reducing behavior for signaling status relative to alternative non-environmental behaviors. Using linear mixed-effects models, we find that information indicating that consumption-reducing behavior is a choice results in higher perceived status. However, we find that consumption-reducing behaviors are perceived to be less appropriate for conveying status than consumption-intensive behaviors. The environmental orientation of the respondent has little effect on perceptions of status in both studies. These results provide insights into the dynamic, evolutionary process by which sustainable consumption might become more socially acceptable and the social factors that may inhibit this process.
Located in
Resources
/
Climate Science Documents
-
Tools and Resources for Addressing Energy Development in the Appalachians
-
On July 20, Jessica Rhodes of the Appalachian LCC gave an in-depth presentation to the Appalachian Mountains Joint Venture (AMJV) community on LCC-funded tools and resources that can address potential impacts of various energy development technologies on birds and other wildlife.
Located in
News & Events
-
Uncertainty in the response of transpiration to CO2 and implications for climate change
-
While terrestrial precipitation is a societally highly relevant climate variable, there is little consensus among climate models about its projected 21st century changes. An important source of precipitable water over land is plant transpiration. Plants control transpiration by opening and closing their stomata. The sensitivity of this process to increasing CO2 concentrations is uncertain. To assess the impact of this uncertainty on future climate, we perform experiments with an intermediate complexity Earth System Climate Model (UVic ESCM) for a range of model-imposed transpiration- sensitivities to CO2. Changing the sensitivity of transpiration to CO2 causes simulated terrestrial precipitation to change by −10% to +27% by 2100 under a high emission scenario. This study emphasises the importance of an improved assessment of the dynamics of environmental impact on vegetation to better predict future changes of the terrestrial hydrological and carbon cycles.
Located in
Resources
/
Climate Science Documents
-
Understanding Ecosystem Services from a Geosciences Perspective
-
Assessment of ecosystem services—the benefits society receives from ecosystems—can be improved by including broader spatial and temporal scales of geosciences perspectives.
Located in
News & Events
-
Workshops Introduce New Way to Evaluate Changes to Benefits of Nature
-
The Appalachian LCC and the U.S. Forest Service held its initial workshops introducing a new way of evaluating ecosystem change and resilience via the Landscape Dynamics Assessment Tool (LanDAT).
Located in
News & Events