-
Amazon Basin climate under global warming: the role of the sea surface temperature
-
The Hadley Centre coupled climate–carbon cycle model (HadCM3LC) predicts loss of the Amazon
rainforest in response to future anthropogenic greenhouse gas emissions. In this study, the
atmospheric component of HadCM3LC is used to assess the role of simulated changes in midtwenty-first
century sea surface temperature (SST) in Amazon Basin climate change. When the full HadCM3LC SST anomalies (SSTAs) are used, the atmosphere model reproduces the Amazon Basin climate change exhibited by HadCM3LC, including much of the reduction in Amazon Basin rainfall. This rainfall change is shown to be the combined effect of SSTAs in both thetropical Atlantic and the Pacific, with roughly equal contributions from each basin. The greatest rainfall reduction occurs from May to October, outside of the mature South American monsoon (SAM) season. This dry season response is the combined effect of a more rapid warming of the tropical North Atlantic relative to the south, and warm SSTAs in the tropical east Pacific. Conversely,
a weak enhancement of mature SAM season rainfall in response to Atlantic SST change is suppressed
by the atmospheric response to Pacific SST. This net wet season response is sufficient to prevent dry
season soil moisture deficits from being recharged through the SAM season, leading to a perennial
soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary
productivity (NPP). A further 23% NPP reduction occurs in response to a 3.58C warmer air
temperature associated with a global mean SST warming.
Located in
Resources
/
Climate Science Documents
-
An Uncertain Future for Soil Carbon
-
Predictions of how rapidly the large amounts of carbon stored as soil organic matter will respond to warming
are highly uncertain (1). Organic matter plays a key role in determining the physical and chemical properties of soils and is a major reservoir for plant nutrients. Understanding how fast organic matter in soils can be built up and lost is thus critical not just for its net effect on the atmospheric CO2 concentration but for
sustaining other soil functions, such as soil fertility, on which societies and ecosystems rely. Recent analytic advances are rapidly improving our understanding of the complex and interacting factors that control the age
and form of organic matter in soils, but the processes that destabilize organic matter in response to disturbances (such as warming or land use change) are poorly understood
Located in
Resources
/
Climate Science Documents
-
AppLCC/USFS Landscape Dynamics Assessment Tool Workshop
-
The Appalachian LCC and the U.S. Forest Service wish to invite you to attend or nominate a representative to attend a 1-day hands-on roll-out of the Landscape Dynamics Assessment Tool.
Located in
News & Events
/
Events
-
Applying LCC Tools to Issues Impacting the Keystone State
-
Pennsylvania is a landscape filled with abundant forests and wildlife, thousands of miles of rivers and streams, and home to a productive energy industry that includes the emergence of natural gas and alternative energy sources. Natural resource agencies and conservation organizations increasingly see the value for proactive science and tools that help inform decisions both locally and regionally in order to best protect and conserve the lands, waters, and wildlife of the state while harnessing resources that benefit society and the economy.
Located in
News & Events
-
Approaching a state shift in Earth’s biosphere
-
Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale ‘tipping point’ highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.
Located in
Resources
/
Climate Science Documents
-
Assessing potential climate change effects on vegetation using a linked model approach
-
We developed a process that links the mechanistic power of dynamic global vegetation models with the detailed vegetation dynamics of state-and-transition models to project local vegetation shifts driven by projected climate change. We applied our approach to central Oregon (USA) ecosystems using three climate change scenarios to assess potential future changes in species composition and community structure. Our results suggest that: (1) legacy effects incorporated in state-and-transition models realistically dampen climate change effects on vegetation; (2) species-specific response to fire built into state-and- transition models can result in increased resistance to climate change, as was the case for ponderosa pine (Pinus ponderosa) forests, or increased sensitivity to climate change, as was the case for some shrublands and grasslands in the study area; and (3) vegetation could remain relatively stable in the short term, then shift rapidly as a consequence of increased disturbance such as wildfire and altered environmental conditions. Managers and other land stewards can use results from our linked models to better anticipate potential climate-induced shifts in local vegetation and resulting effects on wildlife habitat.
Located in
Resources
/
Climate Science Documents
-
Basic mechanism for abrupt monsoon transitions
-
Monsoon systems influence the livelihood of hundreds of millions of people. During the Holocene and last glacial period, rainfall in India and China has undergone strong and abrupt changes. Though details of monsoon circulations are complicated, observations reveal a defining moisture-advection feedback that dominates the seasonal heat balance and might act as an internal amplifier, leading to abrupt changes in response to relatively weak external perturbations. Here we present a minimal conceptual model capturing this positive feedback. The basic equations, motivated by observed relations, yield a threshold behavior, robust with respect to addition of other physical processes. Below this threshold in net radiative influx, Rc , no conventional monsoon can develop; above Rc , two stable regimes exist. We identify a nondimensional para- meter l that defines the threshold and makes monsoon systems comparable with respect to the character of their abrupt transition. This dynamic similitude may be helpful in understanding past and future variations in monsoon circulation. Within the restrictions of the model, we compute Rc for current monsoon systems in India, China, the Bay of Bengal, West Africa, North America, and Australia, where moisture advection is the main driver of the circulation.
Earth system | tipping element | abrupt climate change | atmospheric circulation | nonlinear dynamics
Located in
Resources
/
Climate Science Documents
-
Beaver (Castor canadensis) mitigate the effects of climate on the area of open water in boreal wetlands in western Canada
-
Shallow open water wetlands provide critical habitat for numerous species, yet they have become increasingly vulnerable to drought and warming temperatures and are often reduced in size and depth or disappear during drought. We examined how temperature, precipitation and beaver (Castor canadensis) activity influenced the area of open water in wetlands over a 54- year period in the mixed-wood boreal region of east-central Alberta, Canada. This entire glacial landscape with intermittently connected drainage patterns and shallow wetland lakes with few streams lost all beaver in the 19th century, with beaver returning to the study area in 1954. We assessed the area of open water in wetlands using 12 aerial photo mosaics from 1948 to 2002, which covered wet and dry periods, when beaver were absent on the landscape to a time when they had become well established. The number of active beaver lodges explained over 80% of the variability in the area of open water during that period. Temperature, precipitation and climatic variables were much less important than beaver in maintaining open water areas. In addition, during wet and dry years, the presence of beaver was associated with a 9-fold increase in open water area when compared to a period when beaver were absent from those same sites. Thus, beaver have a dramatic influence on the creation and maintenance of wetlands even during extreme drought. Given the important role of bea- ver in wetland preservation and in light of a drying climate in this region, their removal should be considered a wetland disturbance that should be avoided.
Beaver
Castor canadensis
Drought East-central Alberta Elk Island National Park Mixed-wood boreal Wetland conservation
Located in
Resources
/
Climate Science Documents
-
Biodiversity and ecosystem multifunctionality
-
Biodiversity loss can affect ecosystem functions and services1–4. Individual ecosystem functions generally show a positive asymptotic relationship with increasing biodiversity, suggesting that some species are redundant5–8. However, ecosystems are managed and conserved for multiple functions, which may require greater biodiversity. Here we present an analysis of published data from grassland biodiversity experiments9–11, and show that ecosystem multifunctionality does require greater numbers of species. We analysed each ecosystem function alone to identify species with desirable effects. We then calculated the number of species with positive effects for all possible combinations of functions. Our results show appreciable differences in the sets of species influ- encing different ecosystem functions, with average proportional overlap of about 0.2 to 0.5. Consequently, as more ecosystem pro- cesses were included in our analysis, more species were found to affect overall functioning. Specifically, for all of the analysed experiments, there was a positive saturating relationship between the number of ecosystem processes considered and the number of species influencing overall functioning. We conclude that because different species often influence different functions, studies focus- ing on individual processes in isolation will underestimate levels of biodiversity required to maintain multifunctional ecosystems.
Located in
Resources
/
Climate Science Documents
-
Biodiversity loss and its impact on humanity
-
The most unique feature of Earth is the existence of life, and the most extraordinary feature of life is its diversity. Approximately 9 million types of plants, animals, protists and fungi inhabit the Earth. So, too, do 7 billion people. Two decades ago, at the first Earth Summit, the vast majority of the world’s nations declared that human actions were dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.
Located in
Resources
/
Climate Science Documents